Skip to main content
Log in

Synthesis, Characterization and In Vivo Efficacy of PEGylated Insulin for Oral Delivery with Complexation Hydrogels

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

This work evaluated the feasibility of combining insulin PEGylation with pH responsive hydrogels for oral insulin delivery.

Methods

A mono-substituted PEG–insulin conjugate was synthesized and purified. The site of conjugation was determined by MALDI-TOF MS. Uptake and release of PEGylated insulin was performed in complexation hydrogels to simulate oral dosing. The bioactivity of the conjugate and PK/PD profile was measured in vivo in rats.

Results

PEGylation was confirmed to be specifically located at the amino terminus of the B-chain of insulin. Higher loading efficiency was achieved with PEGylated insulin than regular human insulin in pH responsive hydrogels. The release of PEGylated insulin was lower than that of human insulin at all pH levels considered. Full retention of bioactivity of the PEG–insulin conjugate was confirmed by intravenous dosing while subcutaneous dosing exhibited a relative hypoglycemic effect 127.8% that of human insulin.

Conclusions

Polyethylene glycol conjugated specifically to the amino terminus of the B-chain of insulin maintained the bioactivity of the protein and significantly extended the duration of the hypoglycemic effect. Used in combination with pH responsive hydrogels, PEGylated insulin has significant potential for oral delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

ELISA:

enzyme-linked immunosorbent assay

FPLC:

fast protein liquid chromatography

IEC:

ion exchange chromatography

MAA:

methacrylic acid

MALDI-TOF MS:

matrix-assisted laser desorption ionization time of flight mass spectrometry

PEG:

polyethylene glycol

PEGDMA:

polyethylene glycol dimethacrylate

PEGMA:

polyethylene glycol monomethacrylate monomethyl ether

P(MAA-g-EG):

poly(methacrylic acid-graft-ethylene glycol)

RP-HPLC:

reverse-phase high performance liquid chromatography

References

  1. A. M. Lowman, M. Morishita, M. Kajita, T. Nagai, and N. A. Peppas. Oral delivery of insulin using pH-responsive complexation gels. J. Pharm. Sci. 88:933–937 (1999). Medline. doi:10.1021/js980337n.

    Article  PubMed  CAS  Google Scholar 

  2. A. M. Lowman, and N. A. Peppas. Analysis of the complexation/decomplexation phenomena in graft copolymer networks. Macromolecules. 30:4959–4965 (1997). doi:10.1021/ma970399k.

    Article  CAS  Google Scholar 

  3. N. A. Peppas. Devices based on intelligent biopolymers for oral protein delivery. Int. J. Pharm. 277:11–17 (2004). doi:10.1016/j.ijpharm.2003.03.001.

    Article  PubMed  CAS  Google Scholar 

  4. N. A. Peppas, P. Bures, W. Leobandung, and H. Ichikawa. Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm. 50:27–46 (2000). doi:10.1016/S0939-6411(00)00090-4.

    Article  PubMed  CAS  Google Scholar 

  5. N. A. Peppas, K. B. Keys, M. Torres-Lugo, and A. M. Lowman. Poly(ethylene glycol)-containing hydrogels in drug delivery. J. Control. Release. 62:81–87 (1999). doi:10.1016/S0168-3659(99)00027-9.

    Article  PubMed  CAS  Google Scholar 

  6. T. Yamagata, M. Morishita, N. J. Kavimandan, K. Nakamura, Y. Fukuoka, K. Takayama, and N. A. Peppas. Characterization of insulin protection properties of complexation hydrogels in gastric and intestinal enzyme fluids. J. Control Release. 112:343–349 (2006). doi:10.1016/j.jconrel.2006.03.005.

    Article  PubMed  CAS  Google Scholar 

  7. B. Kim, and N. A. Peppas. In vitro release behavior and stability of insulin in complexation hydrogels as oral drug delivery carriers. Int. J. Pharm. 266:29–37 (2003). doi:10.1016/S0378-5173(03)00378-8.

    Article  PubMed  CAS  Google Scholar 

  8. F. Madsen, and N. A. Peppas. Complexation graft copolymer networks: swelling properties, calcium binding and proteolytic enzyme inhibition. Biomaterials. 20:1701–1708 (1999). doi:10.1016/S0142-9612(99)00071-X.

    Article  PubMed  CAS  Google Scholar 

  9. E. Perakslis, A. Tuesca, and A. Lowman. Complexation hydrogels for oral protein delivery: an in vitro assessment of the insulin transport-enhancing effects following dissolution in simulated digestive fluids. J. Biomater. Sci. Polym. Ed. 18:1475–1490 (2007).

    PubMed  CAS  Google Scholar 

  10. K. Nakamura, R. J. Murray, J. I. Joseph, N. A. Peppas, M. Morishita, and A. M. Lowman. Oral insulin delivery using P(MAA-g-EG) hydrogels: effects of network morphology on insulin delivery characteristics. J. Control Release. 95:589–599 (2004). doi:10.1016/j.jconrel.2003.12.022.

    Article  PubMed  CAS  Google Scholar 

  11. T. Goto, M. Morishita, N. J. Kavimandan, K. Takayama, and N. A. Peppas. Gastrointestinal transit and mucoadhesive characteristics of complexation hydrogels in rats. J. Pharm. Sci. 95:462–469 (2006). doi:10.1002/jps.20566.

    Article  PubMed  CAS  Google Scholar 

  12. M. Torres-Lugo, M. Garcia, R. Record, and N. A. Peppas. pH-Sensitive hydrogels as gastrointestinal tract absorption enhancers: transport mechanisms of salmon calcitonin and other model molecules using the Caco-2 cell model. Biotechnol. Prog. 18:612–616 (2002). doi:10.1021/bp0101379.

    Article  PubMed  CAS  Google Scholar 

  13. H. Ichikawa, and N. A. Peppas. Novel complexation hydrogels for oral peptide delivery: in vitro evaluation of their cytocompatibility and insulin-transport enhancing effects using Caco-2 cell monolayers. J. Biomed. Mater. Res. A. 67:609–617 (2003). doi:10.1002/jbm.a.10128.

    Article  PubMed  Google Scholar 

  14. M. Morishita, T. Goto, K. Nakamura, A. M. Lowman, K. Takayama, and N. A. Peppas. Novel oral insulin delivery systems based on complexation polymer hydrogels: single and multiple administration studies in type 1 and 2 diabetic rats. J. Control Release. 110:587–594 (2006). doi:10.1016/j.jconrel.2005.10.029.

    Article  PubMed  CAS  Google Scholar 

  15. A. Tuesca, K. Nakamura, M. Morishita, J. Joseph, N. Peppas, and A. Lowman. Complexation hydrogels for oral insulin delivery: effects of polymer dosing on in vivo efficacy. J. Pharm. Sci. 97:2607–2618 (2008). doi:10.1002/jps.21184.

    Article  PubMed  CAS  Google Scholar 

  16. S. Zalipsky. Chemistry of polyethylene glycol conjugates with biologically active molecules. Adv. Drug Deliv. Rev. 16:157–182 (1995). doi:10.1016/0169-409X(95)00023-Z.

    Article  CAS  Google Scholar 

  17. F. M. Veronese, and G. Pasut. PEGylation, successful approach to drug delivery. Drug Discov. Today. 10:1451–1458 (2005). doi:10.1016/S1359-6446(05)03575-0.

    Article  PubMed  CAS  Google Scholar 

  18. M. J. Roberts, M. D. Bentley, and J. M. Harris. Chemistry for peptide and protein PEGylation. Adv. Drug Deliv. Rev. 54:459–476 (2002). doi:10.1016/S0169-409X(02)00022-4.

    Article  PubMed  CAS  Google Scholar 

  19. R. B. Greenwald, Y. H. Choe, J. McGuire, and C. D. Conover. Effective drug delivery by PEGylated drug conjugates. Adv. Drug Deliv. Rev. 55:217–250 (2003). doi:10.1016/S0169-409X(02)00180-1.

    Article  PubMed  CAS  Google Scholar 

  20. D. G. Lindsay, and S. Shall. The acetylation of insulin. Biochem. J. 121:737–745 (1971).

    PubMed  CAS  Google Scholar 

  21. P. Calceti, S. Salmaso, G. Walker, and A. Bernkop-Schnurch. Development and in vivo evaluation of an oral insulin–PEG delivery system. Eur. J. Pharm. Sci. 22:315–323 (2004). doi:10.1016/j.ejps.2004.03.015.

    Article  PubMed  CAS  Google Scholar 

  22. M. Baudyš, T. Uchio, L. Hovgaard, E. F. Zhu, T. Avramoglou, M. Jozefowicz, B. Ríhová, J. Y. Park, H. K. Lee, and S. W. Kim. Glycosylated insulins. J. Control Release. 36:151–157 (1995). doi:10.1016/0168-3659(95)00022-Z.

    Article  Google Scholar 

  23. M. Baudyš, T. Uchio, D. Mix, D. Wilson, and S. W. Kim. Physical stabilization of insulin by glycosylation. J. Pharm. Sci. 84:28–33 (1995). doi:10.1002/jps.2600840108.

    Article  PubMed  Google Scholar 

  24. T. Uchio, M. Baudys, F. Liu, S. C. Song, and S. W. Kim. Site-specific insulin conjugates with enhanced stability and extended action profile. Adv. Drug Deliv. Rev. 35:289–306 (1999). doi:10.1016/S0169-409X(98)00078-7.

    Article  PubMed  CAS  Google Scholar 

  25. K. Hinds, J. J. Koh, L. Joss, F. Liu, M. Baudys, and S. W. Kim. Synthesis and characterization of poly(ethylene glycol)–insulin conjugates. Bioconjug. Chem. 11:195–201 (2000). doi:10.1021/bc9901189.

    Article  PubMed  CAS  Google Scholar 

  26. J. S. Patton, M. C. Kuo, J. M. Harris, C. Leach, K. Perkins, and B. Bueche. Compositions of chemically modified insulin, Patent # 6,890,518 B2 United States Patent Office, Nektar Therapeutics, USA, 2005.

  27. A. Sood, and R. Panchagnula. Peroral route: an opportunity for protein and peptide drug delivery. Chem. Rev. 101:3275–3303 (2001). doi:10.1021/cr000700 m.

    Article  PubMed  CAS  Google Scholar 

  28. J. Markussen, J. Halstrom, F. C. Wiberg, and L. Schaffer. Immobilized insulin for high capacity affinity chromatography of insulin receptors. J. Biol. Chem. 266:18814–18818 (1991).

    PubMed  CAS  Google Scholar 

  29. W. Konigsberg. Reduction of disulfide bonds in proteins with dithiolthreitol. Methods Enzymol. 25:185–188 (1972). doi:10.1016/S0076-6879(72)25015-7.

    Article  CAS  Google Scholar 

  30. A. Tuesca, and A. Lowman. Elucidation of the mechanism of enhanced insulin uptake and release from pH responsive hydrogels. Macromol. Symp. 266:101–107 (2008). doi:10.1002/masy.200850619.

    Article  CAS  Google Scholar 

  31. A. Volund. Conversion of insulin units to SI units. Am. J. Clin. Nutr. 58:714–715 (1993).

    PubMed  CAS  Google Scholar 

  32. F. M. Veronese. Peptide and protein PEGylation: a review of problems and solutions. Biomaterials. 22:405–417 (2001). doi:10.1016/S0142-9612(00)00193-9.

    Article  PubMed  CAS  Google Scholar 

  33. J. C. Pickup and G. Williams, Eds. Textbook of Diabetes, Blackwell Science Ltd., Malden, MA, 1997.

  34. M. S. Nolte, and J. H. Karam. Pancreatic Hormones & Anitdiabetic Drugs. In B. G. Katzung (ed.), Basic and Clinical Pharmacology, 10McGraw-Hill, New York, 2007.

    Google Scholar 

  35. K. D. Hinds, and S. W. Kim. Effects of PEG conjugation on insulin properties. Adv. Drug Deliv. Rev. 54:505–530 (2002). doi:10.1016/S0169-409X(02)00025-X.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by funding from NIH Grant # DGE-0221664. Additional funding was provided by NSF grant number R01-EB000246.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony M. Lowman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuesca, A.D., Reiff, C., Joseph, J.I. et al. Synthesis, Characterization and In Vivo Efficacy of PEGylated Insulin for Oral Delivery with Complexation Hydrogels. Pharm Res 26, 727–739 (2009). https://doi.org/10.1007/s11095-008-9816-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9816-8

KEY WORDS

Navigation