Skip to main content

Advertisement

Log in

Novel Pentablock Copolymers for Selective Gene Delivery to Cancer Cells

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

In this study, the novel poly(diethylaminoethylmethacrylate) (PDEAEM)/Pluronic F127 pentablock copolymers were found to be able to mediate high-efficiency transfection of human epithelial ovarian carcinoma (SKOV3) cell line while showing significantly lower efficacy in human epithelial retinal (ARPE-19) cell line and Swiss Mouse Fibroblast (3T3) cell line.

Methods

The intracellular routes of polyplexes were investigated by confocal microscopy after appropriately labeling the polymer and DNA.

Results

It was found that lesser nuclear entry in the ARPE-19 cells may result in the lower efficiency of transfection. Since the SKOV3 proliferation rate was found to be much higher than that of the ARPE-19 cells, the nuclear entry of polyplexes was assumed to be correlated with the proliferation rate, and it was hypothesized that the novel pentablock copolymers could mediate gene delivery selectively in fast growing cells. The different intracellular barriers to gene transfer may also account for the observed difference of transfection efficacy.

Conclusions

Although the validity of the hypothesis that our pentablock copolymer could selectively transfect hyperproliferative cells needs further examination, this present work provides a new perspective to design targeting vectors for cancer therapies based on different characteristics among specific cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

References

  1. J. C. Perales, T. Ferkol, M. Molas, and R.W. Hanson. An evaluation of receptor-mediated gene transfer using synthetic DNA-ligand complexes. Eur. J. Biochem. 226:255–266 (1994). Medline. doi:10.1111/j.1432-1033.1994.tb20049.x.

    Article  PubMed  CAS  Google Scholar 

  2. H. Lee, T. H. Kim, and T. G. Park. A receptor-mediated gene delivery system using streptavidin and biotin-derivatized, pegylated epidermal growth factor. J. Control. Release. 83:109–119 (2002). Medline. doi:10.1016/S0168-3659(02)00166-9.

    Article  PubMed  CAS  Google Scholar 

  3. L. Jabr-Milane, L. van Vlerken, H. Devalapally, D. Shenoy, S. Komareddy, M. Bhavsar, and M. Amiji. Multi-functional nanocarriers for targeted delivery of drugs and genes. J. Control. Release. 130:121–128 (2008).

    Google Scholar 

  4. K. Koike, T. Hara, Y. Aramaki, S. Takada, and S. Tsuchiya. Receptor-mediated gene transfer into hepatic cells using asialoglycoprotein-labeled liposomes. Ann. N. Y. Acad. Sci. 716:331–333 (1994). Medline. doi:10.1111/j.1749-6632.1994.tb21725.x.

    Article  PubMed  CAS  Google Scholar 

  5. C. Plank, K. Zatloukal, M. Cotten, K. Mechtler, and E. Wagner. Gene transfer into hepatocytes using asialoglycoprotein receptor mediated endocytosis of DNA complexed with an artificial tetra-antennary galactose ligand. Bioconjugate. Chem. 3:533–539 (1992). Medline. doi:10.1021/bc00018a012.

    Article  CAS  Google Scholar 

  6. K. Chul Cho, J. Hoon Jeong, H. Jung Chung, C. O Joe, S. Wan Kim, and T. Gwan Park. Folate receptor-mediated intracellular delivery of recombinant caspase-3 for inducing apoptosis. J. Control. Release. 108:121–131 (2005). Medline. doi:10.1016/j.jconrel.2005.07.015.

    Article  PubMed  CAS  Google Scholar 

  7. W. Wijagkanalan, S. Kawakami, M. Takenaga, R. Igarashi, F. Yamashita, and M. Hashida. Efficient targeting to alveolar macrophages by intratracheal administration of mannosylated liposomes in rats. J. Control. Release. 125:121–130 (2008). Medline. doi:10.1016/j.jconrel.2007.10.011.

    Article  PubMed  CAS  Google Scholar 

  8. I. Y. Park, I. Y. Kim, M. K. Yoo, Y. J. Choi, M. -H. Cho, and C. S. Cho. Mannosylated polyethylenimine coupled mesoporous silica nanoparticles for receptor-mediated gene delivery. Int. J. Pharm. 359:280–287 (2008). Medline. doi:10.1016/j.ijpharm.2008.04.010.

    Article  PubMed  CAS  Google Scholar 

  9. J. H. Wong, H. Y. E. Chan, and T. B. Ng. A mannose/glucose-specific lectin from Chinese evergreen chinkapin (Castanopsis chinensis). Biochim. Biophys. Acta (BBA)-General Subjects. 1780:1017–1022 (2008).

    Google Scholar 

  10. Y. Li, M. Ogris, E. Wagner, J. Pelisek, and M. Rüffer. Nanoparticles bearing polyethyleneglycol-coupled transferrin as gene carriers: preparation and in vitro evaluation. Int. J. Pharm. 259:93–101 (2003). Medline. doi:10.1016/S0378-5173(03)00211-4.

    Article  PubMed  CAS  Google Scholar 

  11. C. R. Dass, and P. F. M. Choong. Selective gene delivery for cancer therapy using cationic liposomes: in vivo proof of applicability. J. Control. Release. 113:155–163 (2006). Medline. doi:10.1016/j.jconrel.2006.04.009.

    Article  PubMed  CAS  Google Scholar 

  12. X. B. Zhao, and R. J. Lee. Tumor-selective targeted delivery of genes and antisense oligodeoxyribonucleotides via the folate receptor. Adv. Drug Deliv. Rev. 56:1193–1204 (2004). Medline. doi:10.1016/j.addr.2004.01.005.

    Article  PubMed  CAS  Google Scholar 

  13. B. Liang, M. -L. He, Z. -P. Xiao, Y. Li, C. -Y. Chan, H. -F. Kung, X. -T. Shuai, and Y. Peng. Synthesis and characterization of folate-PEG-grafted-hyperbranched-PEI for tumor-targeted gene delivery. Biochem. Biophys. Res. Commun. 367:874–880 (2008). Medline. doi:10.1016/j.bbrc.2008.01.024.

    Article  PubMed  CAS  Google Scholar 

  14. S. Kawakami, S. Fumoto, M. Nishikawa, F. Yamashita, and M. Hashida. In vivo gene delivery to the liver using novel galactosylated cationic liposomes. Pharm. Res. 17:306–313 (2000). Medline. doi:10.1023/A:1007501122611.

    Article  PubMed  CAS  Google Scholar 

  15. S. Fumoto, F. Nakadori, S. Kawakami, M. Nishikawa, F. Yamashita, and M. Hashida. Analysis of hepatic disposition of galactosylated cationic liposome/plasmid DNA complexes in perfused rat liver. Pharm. Res. 20:1452–1459 (2003). Medline. doi:10.1023/A:1025766429175.

    Article  PubMed  CAS  Google Scholar 

  16. K. Corsi, F. Chellat, L. Yahia, and J. C. Fernandes. Mesenchymal stem cells, MG63 and HEK293 transfection using chitosan–DNA nanoparticles. Biomaterials. 24:1255–1264 (2003). Medline. doi:10.1016/S0142-9612(02)00507-0.

    Article  PubMed  CAS  Google Scholar 

  17. S. -W. Kim, T. Ogawa, Y. Tabata, and I. Nishimura. Efficacy and cytotoxicity of cationic-agent-mediated nonviral gene transfer into osteoblasts. J. Biomed. Mater. Res. Part A. 71A:308–315 (2004). doi:10.1002/jbm.a.30160.

    Article  CAS  Google Scholar 

  18. H. Shen, J. Tan, and W. M. Saltzman. Surface-mediated gene transfer from nanocomposites of controlled texture. Nat Mater. 3:569–574 (2004). Medline. doi:10.1038/nmat1179.

    Article  PubMed  CAS  Google Scholar 

  19. I. Mortimer, P. Tam, I. MacLachlan, R. W. Graham, E. G. Saravolac, and P. B. Joshi. Cationic lipid-mediated transfection of cells in culture requires mitotic activity. Gene Therapy. 6:403–411 (1999). Medline. doi:10.1038/sj.gt.3300837.

    Article  PubMed  CAS  Google Scholar 

  20. A. Remy-Kristensen, J. -P. Clamme, C. Vuilleumier, J. -G. Kuhry, and Y. Mely. Role of endocytosis in the transfection of L929 fibroblasts by polyethylenimine/DNA complexes. Biochim. Biophys. Acta, Biomembr. 1514:21–32 (2001). doi:10.1016/S0005-2736(01)00359-5.

    Article  CAS  Google Scholar 

  21. S. Brunner, T. Sauer, S. Carotta, M. Cotten, M. Saltik, and E. Wagner. Cell cycle dependence of gene transfer by lipoplex, polyplex and recombinant adenovirus. Gene Ther. 7:401–407 (2000). Medline. doi:10.1038/sj.gt.3301102.

    Article  PubMed  CAS  Google Scholar 

  22. H. Pollard, J. -S. Remy, G. Loussouarn, S. Demolombe, J. -P. Behr, and D. Escande. Polyethylenimine but not cationic lipids promotes transgene delivery to the nucleus in mammalian cells. J. Biol. Chem. 273:7507–7511 (1998). Medline. doi:10.1074/jbc.273.13.7507.

    Article  PubMed  CAS  Google Scholar 

  23. M. D. Determan, J. P. Cox, S. Seifert, P. Thiyagarajan, and S. K. Mallapragada. Synthesis and characterization of temperature and pH-responsive pentablock copolymers. Polymer. 46:6933–6946 (2005). doi:10.1016/j.polymer.2005.05.138.

    Article  CAS  Google Scholar 

  24. A. V. Kabanov, E. V. Batrakova, and V. Y. Alakhov. Pluronic(R) block copolymers as novel polymer therapeutics for drug and gene delivery. J. Control. Release. 82:189–212 (2002). Medline. doi:10.1016/S0168-3659(02)00009-3.

    Article  PubMed  CAS  Google Scholar 

  25. A. Agarwal, R. Unfer, and S. K. Mallapragada. Novel cationic pentablock copolymers as non-viral vectors for gene therapy. J. Control. Release. 103:245–258 (2005). Medline. doi:10.1016/j.jconrel.2004.11.022.

    Article  PubMed  CAS  Google Scholar 

  26. A. Agarwal, R. C. Unfer, and S. K. Mallapragada. Investigation of in vitro compatibility of novel pentablock copolymers for gene delivery. J. Biomed. Mater. Res. 81A:24–39 (2007). doi:10.1002/jbm.a.30920.

    Article  CAS  Google Scholar 

  27. W. T. Godbey, K. K. Wu, and A. G. Mikos. Tracking the intracellular path of poly(ethylenimine)/DNA complexes for gene delivery. Proc. Natl. Acad. Sci U. S. A. 96:5177–5181 (1999). Medline. doi:10.1073/pnas.96.9.5177.

    Article  PubMed  CAS  Google Scholar 

  28. T. Serikawa, N. Suzuki, H. Kikuchi, K. Tanaka, and T. Kitagawa. A new cationic liposome for efficient gene delivery with serum into cultured human cells: a quantitative analysis using two independent fluorescent probes. Biochim.Biophys. Acta, Biomembr. 1467:419–430 (2000). doi:10.1016/S0005-2736(00)00239-X.

    Article  CAS  Google Scholar 

  29. M. Ruponen, S. Ronkko, P. Honkakoski, J. Pelkonen, M. Tammi, and A. Urtti. Extracellular glycosaminoglycans modify cellular trafficking of lipoplexes and polyplexes. J. Biol. Chem. 276:33875–33880 (2001). Medline. doi:10.1074/jbc.M011553200.

    Article  PubMed  CAS  Google Scholar 

  30. M. E. Dowty, P. Williams, G. Zhang, J. E. Hagstrom, and A. W. Jon. Plasmid DNA entry into postmitotic nuclei of primary rat myotubes. Proc. Natl. Acad. Sci. U. S. A. 92:4572–4576 (1995). Medline. doi:10.1073/pnas.92.10.4572.

    Article  PubMed  CAS  Google Scholar 

  31. C. W. Pouton, K. M. Wagstaff, D. M. Roth, G. W. Moseley, and D. A. Jans. Targeted delivery to the nucleus. Adv. Drug Deliv. Rev. 59:698–717 (2007). Medline. doi:10.1016/j.addr.2007.06.010.

    Article  PubMed  CAS  Google Scholar 

  32. K. W. Riddle, H. -J. Kong, J. K. Leach, C. Fischbach, C. Cheung, K. S. Anseth, and D. J. Mooney. Modifying the proliferative state of target cells to control DNA expression and identifying cell types transfected in vivo. Mol. Ther. 15:361–368 (2007).

    Article  PubMed  CAS  Google Scholar 

  33. A. -G. Ziady, T. Ferkol, T. Gerken, D. V. Dawson, D. H. Perlmutter, and P. B. Davis. Ligand substitution of receptor targeted DNA complexes affects gene transfer into hepatoma cells. Gene Ther. 5:1685–1697 (1998). Medline. doi:10.1038/sj.gt.3300777.

    Article  PubMed  CAS  Google Scholar 

  34. I. M. Helander, H. -L. Alakomi, K. Latva-Kala, and P. Koski. Polyethyleneimine is an effective permeabilizer of Gram-negative bacteria. Microbiology. 143:3193–3199 (1997).

    Article  PubMed  CAS  Google Scholar 

  35. W. T. Godbey, K. K. Wu, and A. G. Mikos. Poly(ethylenimine)-mediated gene delivery affects endothelial cell function and viability. Biomaterials. 22:471–480 (2001). Medline. doi:10.1016/S0142-9612(00)00203-9.

    Article  PubMed  CAS  Google Scholar 

  36. D. Fischer, Y. Li, B. Ahlemeyer, J. Krieglstein, and T. Kissel. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials. 24:1121–1131 (2003). Medline. doi:10.1016/S0142-9612(02)00445-3.

    Article  PubMed  CAS  Google Scholar 

  37. P. H. Boltont, and D. R. Kearns. Spectroscopic properties of ethidium monoazide: a fluorescent photoaffmity label for nucleic acids. Nucleic Acids Res. 5:4891–4903 (1978). Medline. doi:10.1093/nar/5.12.4891.

    Article  Google Scholar 

  38. M. F. Bureau, S. Naimi, R. Torero Ibad, J. Seguin, C. Georger, E. Arnould, L. Maton, F. Blanche, P. Delaere, and D. Scherman. Intramuscular plasmid DNA electrotransfer: biodistribution and degradation. Biochim. Biophys. Acta, Gene Struct. Expr. 1676:138–148 (2004).

    PubMed  CAS  Google Scholar 

  39. D. Lechardeur, A. S. Verkman, and G. L. Lukacs. Intracellular routing of plasmid DNA during non-viral gene transfer. Adv. Drug Deliv. Rev. 57:755–767 (2005). Medline. doi:10.1016/j.addr.2004.12.008.

    Article  PubMed  CAS  Google Scholar 

  40. G. Liu, D. Li, M. K. Pasumarthy, T. H. Kowalczyk, C. R. Gedeon, S. L. Hyatt, J. M. Payne, T. J. Miller, P. Brunovskis, T. L. Fink, O. Muhammad, R. C. Moen, R. W. Hanson, and M. J. Cooper. Nanoparticles of compacted DNA transfect postmitotic cells. J. Biol. Chem. 278:32578–32586 (2003). Medline. doi:10.1074/jbc.M305776200.

    Article  PubMed  CAS  Google Scholar 

  41. N. Pante, and M. Kann. Nuclear pore complex is able to transport macromolecules with diameters of ∼39 nm. Mol. Biol. Cell. 13:425–434 (2002). Medline. doi:10.1091/mbc.01-06-0308.

    Article  PubMed  CAS  Google Scholar 

  42. R. Y. H. Lim, and B. Fahrenkrog. The nuclear pore complex up close. Curr. Opin. Cell Biol. 18:342–347 (2006). Medline. doi:10.1016/j.ceb.2006.03.006.

    Article  PubMed  CAS  Google Scholar 

  43. C. -K. Chan, and D. A. Jans. Using nuclear targeting signals to enhance non-viral gene transfer. Immunol. Cell Biol. 80:119–130 (2002). Medline. doi:10.1046/j.1440-1711.2002.01061.x.

    Article  PubMed  CAS  Google Scholar 

  44. I. A. Khalil, K. Kogure, H. Akita, and H. Harashima. Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacol. Rev. 58:32–45 (2006). Medline. doi:10.1124/pr.58.1.8.

    Article  PubMed  CAS  Google Scholar 

  45. H. Kamiya, H. Tsuchiya, J. Yamazaki, and H. Harashima. Intracellular trafficking and transgene expression of viral and non-viral gene vectors. Adv. Drug Deliv. Rev. 52:153–164 (2001). Medline. doi:10.1016/S0169-409X(01)00216-2.

    Article  PubMed  CAS  Google Scholar 

  46. M. Colin, G. Maurice, G. Trugnan, M. Kornprobst, R. P. Harbottle, A. Knight, R. G. Cooper, A. D. Miller, J. Capeau, C. Coutelle, and M. C. Brahimi-Horn. Cell delivery, intracellular trafficking and expression of an integrin-mediated gene transfer vector in tracheal epithelial cells. Gene Ther. 7:139–152 (2000). Medline. doi:10.1038/sj.gt.3301056.

    Article  PubMed  CAS  Google Scholar 

  47. J. Suh, D. Wirtz, and J. Hanes. Efficient active transport of gene nanocarriers to the cell nucleus. Proc. Natl. Acad. Sci. 100:3878–3882 (2003). Medline. doi:10.1073/pnas.0636277100.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to acknowledge financial support from the Bailey Career Development grant and a NSF-REU grant. We would also like to thank Marit Nilsen-Hamilton for providing 3T3 cells. Mallapragada would like to dedicate this manuscript to Prof. Nicholas Peppas for his exceptional guidance, mentoring and friendship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surya Mallapragada.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11095_2008_9813_MOESM1_ESM.doc

Supplementary Figure 1. Proliferation measurement of SKOV3 cells (A) and ARPE-19 cells (B) with nuclei labeled by DAPI (blue) and newly formed cells labeled by Brdu (pink). (DOC 1.02 MB)

Supplementary Figure 2. Fluorescence spectra of DNA-EMA and degraded DNA-EMA treated with nuclease I. (DOC 32.0 KB)

11095_2008_9813_MOESM3_ESM.doc

Supplementary Figure 3. Transfection of HT1080/ARPE-19 cells with P/DNA (EGFP-N1) polyplexes at N/P ratio of 20. After being labeled with DAPI, HT1080 cells are shown in purple (overlap of red and blue) and ARPE-19 cells are shown in blue (A); EGFP expression in HT1080 cells are indicated in yellow (B). (DOC 1.26 MB)

11095_2008_9813_MOESM4_ESM.doc

Supplementary Figure 4. EGFP expression in HT1080/ARPE-19 co-cultures transfected with ExGen/DNA (EGFP-N1) polyplexes at N/P ratio of 6. (DOC 803 KB)

Supplementary Scheme 1. Amine functionalization of pentablock copolymers. (DOC 40 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, B., Kanapathipillai, M., Bisso, P. et al. Novel Pentablock Copolymers for Selective Gene Delivery to Cancer Cells. Pharm Res 26, 700–713 (2009). https://doi.org/10.1007/s11095-008-9813-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9813-y

KEY WORDS

Navigation