Pharmaceutical Research

, Volume 26, Issue 5, pp 1025–1058 | Cite as

Methods for the Preparation and Manufacture of Polymeric Nanoparticles

Expert Review

Abstract

This review summarizes the different methods of preparation of polymer nanoparticles including nanospheres and nanocapsules. The first part summarizes the basic principle of each method of nanoparticle preparation. It presents the most recent innovations and progresses obtained over the last decade and which were not included in previous reviews on the subject. Strategies for the obtaining of nanoparticles with controlled in vivo fate are described in the second part of the review. A paragraph summarizing scaling up of nanoparticle production and presenting corresponding pilot set-up is considered in the third part of the review. Treatments of nanoparticles, applied after the synthesis, are described in the next part including purification, sterilization, lyophilization and concentration. Finally, methods to obtain labelled nanoparticles for in vitro and in vivo investigations are described in the last part of this review.

KEY WORDS

gel nanocapsules nanospheres polyelectrolyte complex polymerization precipitation purification scale-up 

References

  1. 1.
    J. C. Allémann Leroux, and R. Gurny. Polymeric nano-and microparticles for the oral delivery of peptides and peptidomimetics. Adv. Drug Deliv. Rev. 34(2–3):171–189 (1998). doi:10.1016/S0169-409X(98)00039-8.Google Scholar
  2. 2.
    P. Couvreur, and C. Vauthier. Nanotechnology: intelligent design to treat complex disease. Pharm. Res. 23:1417–1450 (2006). doi:10.1007/s11095-006-0284-8.PubMedGoogle Scholar
  3. 3.
    R. Juliano, M. R. Alam, V. Dixit, and H. Kang. Mechanisms and strategies for effective delivery of antisense and siRNA oligonucleotides. Nucleic Acids Res. 36(12):4158–4171 (2008). doi:10.1093/nar/gkn342.PubMedGoogle Scholar
  4. 4.
    C. Pinto-Reis, R. J. Neufeld, A. J. Ribeiro, and F. Veiga. Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine. 2:8–21 (2006).PubMedGoogle Scholar
  5. 5.
    A. F. Soares, R. A. de Carvalho, and F. Veiga. Oral administration of peptides and proteins: nanoparticles and cyclodextrins as biocompatible delivery systems. Nanomedicine. 2(2):183–202 (2007). doi:10.2217/17435889.2.2.183.PubMedGoogle Scholar
  6. 6.
    C. Vauthier, and D. Labarre. Modular biomimetic drug delivery systems. J. Drug Deliv. Sci. Technol. 18(1):59–68 (2008).Google Scholar
  7. 7.
    H. de Martimprey, C. Vauthier, C. Malvy, and P. Couvreur. Polymer nanocarriers for the delivery of small fragments of nucleic acids: Oligonucleotides and siRNA. Eur. J. Pharm. Biopharm., in press (2008)Google Scholar
  8. 8.
    C. Pichot, and J. C. Daniel (eds.), Latex Synthétiques : Elaboration-Propriétés-Applications, Lavoisier, Paris, France, 2006.Google Scholar
  9. 9.
    W. A. Braunecker, and K. Matyjaszewski. Controlled/living radical polymerization: features, developments and perspectives. Prog. Polymer. Sci. 33:93–146 (2007). doi:10.1016/j.progpolymsci.2006.11.002.Google Scholar
  10. 10.
    C. Vauthier-Holtzscherer, S. Benabbou, G. Spenlehauer, M. Veillard, and P. Couvreur. Methodology for the preparation of ultradispersed polymer systems. STP Pharma Sci. 1:109–116 (1991).Google Scholar
  11. 11.
    E. Allémann, R. Gurny, and E. Doelker. Drug loaded nanoparticles. Preparation, methods and drug targeting issues. Eur. J. Pharm. Biopharm. 39:173–191 (1993).Google Scholar
  12. 12.
    D. Quintanar-Guerrero, E. Allémann, H. Fessi, and E. Doelker. Preparation techniques and mechanism of formation of biodegradable nanoparticles from preformed polymers. Drug Dev. Ind. Pharm. 24:1113–1128 (1998). doi:10.3109/03639049809108571.PubMedGoogle Scholar
  13. 13.
    F. De Jaeghere, E. Doelker, and R. Gurny. Nanoparticles. In E. Mathiowitz (ed.), The Encyclopedia of Controlled Drug Delivery, Wiley, New York, 1999, pp. 641–664.Google Scholar
  14. 14.
    P. Couvreur, G. Barratt, E. Fattal, P. Legrand, and C. Vauthier. Nanocapsule technology: a review. Crit. Rev. Ther. Drug. Carrier Syst. 19(2):99–134 (2002). doi:10.1615/CritRevTherDrugCarrierSyst.v19.i2.10.PubMedGoogle Scholar
  15. 15.
    C. Vauthier, E. Fattal, and D. Labarre. From polymer chemistry and physicochemistry to nanoparticular drug carrier design and applications. In M. J. Yaszemski, D. J. Trantolo, K. U. Lewamdrowski, V. Hasirci, D. E. Altobelli, and D. L. Wise (eds.), Biomaterial Handbook-Advanced Applications of Basic Sciences and Bioengineering, Marcel Dekker, New York, 2004, pp. 563–598.Google Scholar
  16. 16.
    D. Moinard-Chécot, Y. Chevalier, S. Briançon, H. Fessi, and S. Guinebretière. Nanoparticles for drug delivery: review of the formulation and process difficulties illustrated by the emulsion-diffusion process. J. Nanosci. Nanotechnol. 6(9–10):2664–2681 (2006). doi:10.1166/jnn.2006.479.PubMedGoogle Scholar
  17. 17.
    C. Vauthier. Généralités sur les techniques d’émulsification et d’obtention de dispersions de particules polymère : avantages et inconvénients. In C. Pichot et, and J. C. Daniel (eds.), Latex Synthétiques : Elaboration-Propriétés-Applications, Lavoisier, Paris, 2006, pp. 291–317.Google Scholar
  18. 18.
    N. Al Khoury-Fallouh, L. Roblot-Treupel, H. Fessi, J. P. Devissaguet, and F. Puisieux. Development of a new process for the manufacture of poly(isobutylcyanoacrylate) nanocapsules. Int. J. Pharm. 28:125–136 (1986). doi:10.1016/0378-5173(86)90236-X.Google Scholar
  19. 19.
    H. Vranckx, M. Demoustier, and M. Deleers. A new nanocapsule formulation with hydrophilic core: Application to the oral administration of salmon calcitonin in rats. J. Pharm. Pharmacol. 42:345–347 (1996).Google Scholar
  20. 20.
    G. Lambert, E. Fattal, H. Pinto-Alphandary, A. Gulik, and P. Couvreur. Polyisobutylcyanoacrylate nanocapsules containing an aqueous core as a novel colloidal carrier for the delivery of oligonucleotides. Pharm. Res. 17(6):707–714 (2000). doi:10.1023/A:1007582332491.PubMedGoogle Scholar
  21. 21.
    M. Wohlgemuth, W. Mächtle, and C. Mayer. Improved preparation and physical studes of polybutylcyanoacrylate nanocapsules. J. Microencapsulation. 17:437–448 (2000). doi:10.1080/026520400405697.PubMedGoogle Scholar
  22. 22.
    C. Mayer. Nanocapsules as drug delivery systems. Int. J. Artif. Organs. 28(11):1163–1171 (2005).PubMedGoogle Scholar
  23. 23.
    H. Hillaireau, T. Le Doan, M. Appel, and P. Couvreur. Hybrid polymer nanocapsules enhance in vitro delivery of azidothymidine-triphosphate to macrophages. J. Control. Release. 116:346–352 (2006). doi:10.1016/j.jconrel.2006.09.016.PubMedGoogle Scholar
  24. 24.
    S. Watnasirichaikul, T. Rades, I. G. Tucker, and N. M. Davies. Effects of formulation variables on characteristics of poly(ethylcyanoacrylate) nanocapsules prepared from w/o microemulsions. Int. J. Pharm. 235:237–246 (2002). doi:10.1016/S0378-5173(02)00002-9.PubMedGoogle Scholar
  25. 25.
    K. Bouchemal, S. Briançon, E. Perrier, H. Fessi, I. Bonnet, and N. Zydowicz. Synthesis and characterization of polyurethane and poly (ether urethane) nanocapsules using a new technique of interfacial polycondensation combined to spontaneous emulsification. Int. J. Pharm. 269(1):89–100 (2004). doi:10.1016/j.ijpharm.2003.09.025.PubMedGoogle Scholar
  26. 26.
    K. Bouchemal, S. Briançon, H. Fessi, Y. Chevalier, I. Bonnet, and E. Perrier. Simultaneous emulsification and interfacial polycondensation for the preparation of colloidal suspension of nanocapsules. Mater. Sci. Eng. C. 26:472–480 (2006). doi:10.1016/j.msec.2005.10.022.Google Scholar
  27. 27.
    N. Ammoury, H. Fessi, J. P. Devissaguet, F. Puisieux, and S. Benita. In vitro release kinetic pattern of indomethacin from poly(D,L-lactide) nanocapsules. J. Pharm. Sci. 79(9):763–767 (1990). doi:10.1002/jps.2600790902.PubMedGoogle Scholar
  28. 28.
    D. Quintanar-Guerrero, É. Allémann, É. Doelker, and H. Fessi. Preparation and characterization of nanocapsules from preformed polymers by a new process based on emulsification–diffusion technique. Pharm. Res. 15:1056–1062 (1998). doi:10.1023/A:1011934328471.PubMedGoogle Scholar
  29. 29.
    M. F. Zambaux, F. Bonneaux, R. Gref, P. Maincent, E. Dellacherie, M. J. Alonso, P. Labrude, and C. Vigneron. Influence of experimental parameters on the characteristics of poly(lactic acid) nanoparticles prepared by a double emulsion method. J. Control. Release. 50(1–3):31–40 (1998). doi:10.1016/S0168-3659(97)00106-5.PubMedGoogle Scholar
  30. 30.
    D. Moinard-Chécot, Y. Chevalier, S. Briançon, L. Beney, and H. Fessi. Mechanism of nanocapsules formation by the emulsion–diffusion process. J. Colloid Interface Sci. 317:458–468 (2008). doi:10.1016/j.jcis.2007.09.081.PubMedGoogle Scholar
  31. 31.
    M. Skiba. Developpement pharmacotechnique et biopharmaceutique de nouveaux vecteurs colloidaux : nanoparticles à base de cyclodextrines modifiées. Ph.D. Université de Paris Sud-11, décembre 1994.Google Scholar
  32. 32.
    C. Vauthier, and P. Couvreur. Development of nanoparticles made of polysaccharides as novel drug carrier systems. In D. L. Wise (ed.), Handbook of Pharmaceutical Controlled Release Technology, Marcel Dekker, New York, 2000, pp. 413–429.Google Scholar
  33. 33.
    E. Martinez-Barbosa. Synthèse de dérivés de poly(L-glutamate de γ-benzyle). Préparation et caractérisation de nanoparticules multifonctionnelles. Ph. D. Université Paris Sud-11. 2006.Google Scholar
  34. 34.
    N. Toub, C. Malvy, E. Fattal, and P. Couvreur. Innovative nanotechnologies for the delivery of oligonucleotides and siRNA. Biomed. Pharmacother. 60(9):607–620 (2006). doi:10.1016/j.biopha.2006.07.093.PubMedGoogle Scholar
  35. 35.
    C. Perez, A. Sanchez, D. Putnam, D. Ting, R. Langer, and M. J. Alonso. Poly(lactic acid)-poly(ethylene glycol) nanoparticles as new carriers for the delivery of plasmid DNA. J. Control. Release. 75:211–224 (2001). doi:10.1016/S0168-3659(01)00397-2.PubMedGoogle Scholar
  36. 36.
    C. G. Oster, M. Wittmar, F. Unger, L. Barbu-Tudoran, A. K. Schaper, and T. Kissel. Design of amine-modified graft polyesters for effective gene delivery using DNA-loaded nanoparticles. Pharm. Res. 21(6):927–931 (2004). doi:10.1023/B:PHAM.0000029279.50733.55.PubMedGoogle Scholar
  37. 37.
    V. Vogel, D. Lochmann, J. Weyermann, G. Mayer, C. Tziatzios, J. A. van den Broek, W. Haase, D. Wouters, U. S. Schubert, J. Kreuter, A. Zimmer, and D. Schubert. Oligonucleotide–protamine–albumin nanoparticles: preparation, physical properties and intracellular distribution. J. Control. Release. 103(1, 2):99–111 (2005).PubMedGoogle Scholar
  38. 38.
    N. Nafee, S. Taetz, M. Schneider, U. F. Schaefer, and C. M. Lehr. Chitosan-coated PLGA nanoparticles for DNA/RNA delivery: effect of the formulation parameters on complexation and transfection of antisense oligonucleotides. Nanomedicine. 3(3):173–183 (2007).PubMedGoogle Scholar
  39. 39.
    H. Hillaireau, T. Le Doan, H. Chacun, J. Janin, and P. Couvreur. Encapsulation of mono-and oligo-nucleotides into aqueous-core nanocapsules in presence of various water-soluble polymers. Int. J. Pharm. 331(2):148–152 (2007). doi:10.1016/j.ijpharm.2006.10.031.PubMedGoogle Scholar
  40. 40.
    C. Chavany, T. Le Doan, P. Couvreur, F. Puisieux, and C. Hélèna. Polyalkylcyanoacrylate nanoparticles as polymeric carriers for antisense oligonucleotides. Pharm. Res. 9(4):441–449 (1992). doi:10.1023/A:1015871809313.PubMedGoogle Scholar
  41. 41.
    P. Zobel, M. Junghans, V. Maienschein, D. Werner, M. Gilbert, H. Zimmermann, C. Noe, J. Kreuter, and A. Zimmer. Enhanced antisense efficacy of oligonucleotides adsorbed to monomethylaminoethylmethacrylate methylmethacrylate copolymer nanoparticles. Eur. J. Pharm. Biopharm. 49(3):203–210 (2000). doi:10.1016/S0939-6411(00)00080-1.PubMedGoogle Scholar
  42. 42.
    H. de Martimprey, J. R. Bertrand, A. Fusco, M. Santoro, P. Couvreur, C. Vauthier, and C. Malvy. siRNA nanoformulation against the ret/PTC1 junction oncogene is efficient in an in vivo model of papillary thyroid carcinoma. Nucleic Acids Res. 36(1):e2 (2008). doi:10.1093/nar/gkm1094.PubMedGoogle Scholar
  43. 43.
    M. Okada. Chemical synthesis of biodegradable polymers. Prog. Polym. Sci. 27:87–133 (2002). doi:10.1016/S0079-6700(01)00039-9.Google Scholar
  44. 44.
    L. Y Qiu, and Y. H. Bae. Polymer architecture and drug delivery. Pharm. Res. 23(1):1–30 (2006). doi:10.1007/s11095-005-9046-2.Google Scholar
  45. 45.
    S. Slomkovski. Biodegradable nano-and microparticles as carriers of bioactive compounds. Acta Pol. Pharm. 63(5):351–358 (2006).Google Scholar
  46. 46.
    L. S. Nair, and C. T. Laurencin. Biodegradable polymers as biomaterials. Prog. Polym. Sci. 32:762–789 (2007). doi:10.1016/j.progpolymsci.2007.05.017.Google Scholar
  47. 47.
    V. P. Torchilin, and V. S. Trubetskoy. Which polymers can make nanoparticulate drug carriers long-circulating? Adv. Drug Deliv. Rev. 16:141–155 (1995). doi:10.1016/0169-409X(95)00022-Y.Google Scholar
  48. 48.
    K. Avgoustakis. Pegylated poly(lactide) and poly(lactide-co-glycolide) nanoparticles: preparation, properties and possible applications in drug delivery. Curr. Drug Deliv. 1(4):321–333 (2004). doi:10.2174/1567201043334605.PubMedGoogle Scholar
  49. 49.
    V. C. Mosqueira, P. Legrand, J. L. Morgat, M. Vert, E. Mysiakine, R. Gref, J. P. Devissaguet, and G. Barratt. Biodistribution of long-circulating PEG-grafted nanocapsules in mice: effects of PEG chain length and density. Pharm. Res. 18(10):1411–1419 (2001). doi:10.1023/A:1012248721523.PubMedGoogle Scholar
  50. 50.
    C. Lemarchand, P. Couvreur, C. Vauthier, D. Costantini, and R. Gref. Study of emulsion stabilization by graft copolymers using the optical analyzer Turbiscan. Int. J. Pharm. 254(1):77–82 (2003). doi:10.1016/S0378-5173(02)00687-7.PubMedGoogle Scholar
  51. 51.
    C. Chauvierre, D. Labarre, P. Couvreur, and C. Vauthier. Novel polysaccharide-decorated poly(isobutyl cyanoacrylate) nanoparticles. Pharm. Res. 20:1786–1793 (2003). doi:10.1023/B:PHAM.0000003376.57954.2a.PubMedGoogle Scholar
  52. 52.
    C. Chauvierre, D. Labarre, P. Couvreur, and C. Vauthier. A new approach for the characterization of insoluble amphiphilic copolymers based on their emulsifying properties. Colloid Polym. Sci. 282:1097–1104 (2004). doi:10.1007/s00396-003-1040-9.Google Scholar
  53. 53.
    N. Anton, J. P. Benoit, and P. Saulnier. Design and production of nanoparticles formulated from nano-emulsion templates-A review. J. Control. Release. 128:185–199 (2008). doi:10.1016/j.jconrel.2008.02.007.PubMedGoogle Scholar
  54. 54.
    M. Stork, R. L. Tousain, J. A. Wieringa, and O. H. Bosgra. A MILP approach to the optimization of the operation procedure of a fed-batch emulsification process in a stirred vessel. Comp. Chem. Eng. 27:1681–1691 (2003). doi:10.1016/S0098-1354(03)00135-2.Google Scholar
  55. 55.
    C. Mabille, F. Leal-Calderon, J. Bibette, and V. Schmitt. Monodisperse fragmentation in emulsions: Mechanisms and kinetics. Europhys. Lett. 61(5):708–714 (2003). doi:10.1209/epl/i2003-00133-6.Google Scholar
  56. 56.
    C. Charcosset, and H. Fessi. Preparation of nanoparticles with a membrane contactor. J. Membrane Sci. 266:115–120 (2005). doi:10.1016/j.memsci.2005.05.016.Google Scholar
  57. 57.
    S. Freitas, H. P. Merkle, and B. Gander. Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation process technology. J. Control. Release. 102(2):313–332 (2005). doi:10.1016/j.jconrel.2004.10.015.PubMedGoogle Scholar
  58. 58.
    I. Kobayashi, S. Mukataka, and M. Nakajima. Effects of type and physical properties of oil phase on oil-in-water emulsion droplet formation in straight-through microchannel emulsification, experimental and CFD studies. Langmuir. 21(13):5722–2730 (2005). doi:10.1021/la050039n.PubMedGoogle Scholar
  59. 59.
    M. J. Geerken, R. G. H. Lammertink, and M. Wessling. Interfacial aspects of water drop formation at micro-engineered orifices. J. Colloid Interface Sci. 312(2):460–446 (2007). doi:10.1016/j.jcis.2007.03.074.PubMedGoogle Scholar
  60. 60.
    C. Charcosset, A. El-Harati, and H. Fessi. Preparation of solid lipid nanoparticles using a membrane contactor. J. Control. Release. 108:112–120 (2005). doi:10.1016/j.jconrel.2005.07.023.PubMedGoogle Scholar
  61. 61.
    I. Limayem Blouza, C. Charcosset, S. Sfar, and H. Fessi. Preparation and characterization of spironolactone-loaded nanocapsules for paediatric use. Int. J. Pharm. 325:124–131 (2006). doi:10.1016/j.ijpharm.2006.06.022.PubMedGoogle Scholar
  62. 62.
    N. Sheibat-Othman, T. Burne, C. Charcosset, and H. Fessi. Preparation of pH-sensitive particles by membrane contactor. Colloid Surf. A. 315:13–22 (2008). doi:10.1016/j.colsurfa.2007.07.003.Google Scholar
  63. 63.
    S. Desgouilles, C. Vauthier, D. Bazile, J. Vacus, J.-L. Grossiord, M. Veillard, and P. Couvreur. The design of nanoparticles obtained by solvent evaporation: a comprehensive study. Langmuir. 19(22):9504–9510 (2003). doi:10.1021/la034999q.Google Scholar
  64. 64.
    S. A. Vitale, and J. L. Katz. Liquid droplet dispersions formed by homogeneous liquid-liquid nucleation: “The ouzo effect”. Langmuir. 19(10):4105–4110 (2003). doi:10.1021/la026842o.Google Scholar
  65. 65.
    K. Bouchemal, S. Briançon, E. Perrier, and H. Fessi. Nano-emulsion formulation using spontaneous emulsification: Solvent, oil and surfactant optimization. Int. J. Pharm. 280(1–2):241–251 (2004). doi:10.1016/j.ijpharm.2004.05.016.PubMedGoogle Scholar
  66. 66.
    F. Ganachaud, and J. Katz. Nanoparticles and nanocapsules created using the ouzo effect: spontaneous emulsification as an alternative to ultrasonic and high-shear devices. Chem. Phys. Chem. 6:209–216 (2005). doi:10.1002/cphc.200400527.Google Scholar
  67. 67.
    J. W. Nah, T. R. Jung, Y. L. Jeong, M. K. Jang. Biodegradable nanoparticles of poly(DL-lactide-co-glycolide) encapsulating ciprofloxacin HCl having an extended-release property and manufacturing method thereof. World Patent 054042 (2008).Google Scholar
  68. 68.
    C. K. Weiss, U. Ziener, and K. Landfester. A route to nonfunctionalized and functionalized poly(n-butylcyanoacrylate) nanoparticles: preparation in miniemulsion. Macromolecules. 40(4):928–938 (2007). doi:10.1021/ma061865l.Google Scholar
  69. 69.
    K. Landfester. Polyreactions in miniemulsions. Macromol. Rapid Comm. 22:896–936 (2001). doi:10.1002/1521-3927(20010801)22:12<896::AID-MARC896>3.0.CO;2-R.Google Scholar
  70. 70.
    J. Qiu, B. Charleux, and K. Matyjaszewski. Controlled/living radical polymerization in aqueous media: homogeneous and heterogeneous systems. Prog. Polym. Sci. 26:2083–2134 (2001). doi:10.1016/S0079-6700(01)00033-8.Google Scholar
  71. 71.
    R. Gref, Y. Minamitake, M. T. Peracchia, V. Trubetskoy, V. Torchilin, and R. Langer. Biodegradable long-circulating polymeric nanospheres. Science. 263:1600–1603 (1994). doi:10.1126/science.8128245.PubMedGoogle Scholar
  72. 72.
    D. Bazile, C. Prud’homme, M. T. Bassoulet, M. Marlard, G. Spenlehauer, and M. Veillard. Stealth Me-PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system. J. Pharm. Sci. 84:493–498 (1995). doi:10.1002/jps.2600840420.PubMedGoogle Scholar
  73. 73.
    C. Lemarchand, P. Couvreur, M. Besnard, D. Costantini, and R. Gref. Novel polyester-polysaccharide nanoparticles. Pharm. Res. 20(8):1284–1292 (2003). doi:10.1023/A:1025017502379.PubMedGoogle Scholar
  74. 74.
    R. Gurny, N. A. Peppas, D. D. Harrington, and G. S. Banker. Development of biodegradable and injectable lattices for controlled release potent drugs. Drug. Dev. Ind. Pharm. 7:1–25 (1981). doi:10.3109/03639048109055684.Google Scholar
  75. 75.
    E. Allémann, R. Gurny, and E. Doelker. Preparation of aqueous polymeric nanodispersions by a reversible salting-out process: influence of process parameters on particle size. Int. J. Pharm. 87(1–3):247–253 (1992). doi:10.1016/0378-5173(92)90249-2.Google Scholar
  76. 76.
    W. Y. Dong, M. Körber, V. López Esguerra, and R. Bodmeier. Stability of poly(D,L-lactide-co-glycolide) and leuprolide acetate in in-situ forming drug delivery systems. J. Control. Release. 115(2):158–167 (2006). doi:10.1016/j.jconrel.2006.07.013.PubMedGoogle Scholar
  77. 77.
    F. Delie, M. Berton, E. Allémann, and R. Gurny. Comparison of two methods of encapsulation of an oligonucleotide into Poly(D,L-Lactic Acid) particles. Int. J. Pharm. 214:25–30 (2001). doi:10.1016/S0378-5173(00)00627-X.PubMedGoogle Scholar
  78. 78.
    U. Bilati, E. Allémann, and E. Doelker. Poly(D,L-lactide-co-glycolide) protein-loaded nanoparticles prepared by the double emulsion method—processing and formulation issues for enhanced entrapment efficiency. J. Microencapsul. 22(2):205–214 (2005). doi:10.1080/02652040400026442.PubMedGoogle Scholar
  79. 79.
    J. W. Vanderhoff, M. S. El Aasser, and J. Ugelstad. Polymer emulsification process. US Patent 4,177,177 (1979).Google Scholar
  80. 80.
    D. Quintanar-Guerrero, E. Allémann, H. Fessi, and E. Doelker. Pseudolatex preparation using a novel emulsion-diffusion process involving direct displacement of partially water-miscible solvents by distillation. Int. J. Pharm. 188(2):155–164 (1999). doi:10.1016/S0378-5173(99)00216-1.PubMedGoogle Scholar
  81. 81.
    R. C. Mundargi, V. R. Babu, V. Rangaswamy, P. Patel, and T. M. Aminabhavi. Nano/micro technologies for delivering macromolecular therapeutics using poly(D,L-lactide-co-glycolide) and its derivatives. J. Control. Release. 125(3):193–209 (2008). doi:10.1016/j.jconrel.2007.09.013.PubMedGoogle Scholar
  82. 82.
    I. Brigger, P. Chaminade, D. Desmaële, M. T. Peracchia, J. d’Angelo, R. Gurny, M. Renoir, and P. Couvreur. Near infrared with principal component analysis as a novel analytical approach for nanoparticle technology. Pharm. Res. 17(9):1124–1132 (2000). doi:10.1023/A:1026465931525.PubMedGoogle Scholar
  83. 83.
    J. C. Leroux, E. Allemann, E. Doelker, and R. Gurny. New approach for the preparation of nanoparticles by an emulsification–diffusion method. Eur. J. Pharm. Biopharm. 41(1):14–18 (1995).Google Scholar
  84. 84.
    D. Quintanar-Guerrero, E. Allémann, E. Doelker, and H. Fessi. A mechanistic study of the formation of polymer nanoparticles by the emulsification–diffusion technique. Colloid Polym. Sci. 275:640–647 (1997). doi:10.1007/s003960050130.Google Scholar
  85. 85.
    D. Quintanar-Guerrero, É. Allémann, H. Fessi, and E. Doelker. Influence of stabilizing agents and preparative variables on the formation of poly(-lactic acid) nanoparticles by an emulsification–diffusion technique. Int. J. Pharm. 143:133–141 (1996). doi:10.1016/S0378-5173(96)04697-2.Google Scholar
  86. 86.
    S. Guinebretière. Nanocapsules par émulsion–diffusion de solvant: obtention, caractérisation et mécanisme de formation. Ph.D. Université Claude Bernard Lyon 1 (2001).Google Scholar
  87. 87.
    D. Quintanar-Guerrero, D. Tamayo-Esquivel, A. Ganem-Quintanar, E. Allémann, and E. Doelker. Adaptation and optimization of the emulsification–diffusion technique to prepare lipidic nanospheres. Eur. J. Pharm. Sci. 26:211–218 (2005). doi:10.1016/j.ejps.2005.06.001.PubMedGoogle Scholar
  88. 88.
    M. Trotta, F. Debernardi, and O. Caputo. Preparation of solid lipid nanoparticles by a solvent emulsification–diffusion technique. Int. J. Pharm. 257:153–160 (2003). doi:10.1016/S0378-5173(03)00135-2.PubMedGoogle Scholar
  89. 89.
    L. Battaglia, M. Trotta, M. Gallarate, M. E. Carlotti, G. P. Zara, and A. Bargoni. Solid lipid nanoparticles formed by solvent-in-water emulsion–diffusion technique: Development and influence on insulin stability. J. Microencapsul. 24:672–684 (2007). doi:10.1080/02652040701532981.Google Scholar
  90. 90.
    D. Quintanar-Guerrero, A. Ganem-Quintanar, E. Allemann, H. Fessi, and E. Doelker. Influence of the stabilizer coating layer on the purification and freeze-drying of poly(D,L-lactic acid) nanoparticles prepared by an emulsion–diffusion technique. J. Microencapsul. 15:107–119 (1998). doi:10.3109/02652049809006840.PubMedGoogle Scholar
  91. 91.
    F. F. De Jaeghere, E. Allémann, F. Kubel, B. Galli, R. Cozens, E. Doelker, and R. Gurny. Oral bioavailability of a poorly water soluble HIV-1 protease inhibitor incorporated into pH-sensitive particles: effect of the particle size and nutritional state. J. Control. Release. 68(2):291–298 (2000). doi:10.1016/S0168-3659(00)00272-8.PubMedGoogle Scholar
  92. 92.
    M. Berton, E. Allemann, C. A. Stein, and R. Gurny. Highly loaded nanoparticulate carrier using an hydrophobic antisense oligonucleotide complex. Eur. J. Pharm. Sci. 9(2):163–170 (1999). doi:10.1016/S0928-0987(99)00049-4.PubMedGoogle Scholar
  93. 93.
    Y. N. Konan, R. Cerny, J. Favet, M. Berton, R. Gurny, and E. Allémann. Preparation and characterization of sterile sub-200 nm meso-tetra(4-hydroxylphenyl)porphyrin-loaded nanoparticles for photodynamic therapy. Eur. J. Pharm. Biopharm. 55:115–124 (2003). doi:10.1016/S0939-6411(02)00128-5.PubMedGoogle Scholar
  94. 94.
    H. S. Yoo, J. E. Oh, K. H. Lee, and T. G. Park. Biodegradable nanoparticles containing PLGA conjugate for sustained release. Pharm. Res. 16:1114–1118 (1996). doi:10.1023/A:1018908421434.Google Scholar
  95. 95.
    S. Guinebretière, S. Briancon, H. Fessi, V. S. Teodorescu, and M. G. Blanchin. Nanocapsules of biodegradable polymers: preparation and characterization by direct high resolution electron microscopy. Mater. Sci. Eng. C. 21:137–142 (2002). doi:10.1016/S0928-4931(02)00073-5.Google Scholar
  96. 96.
    D. Quintanar, H. Fessi, É. Doelker, and E. Allémann, Procédé de préparation de nanocapsules de type vésiculaire. World Patent 004766 (1999).Google Scholar
  97. 97.
    H. Ibrahim, C. Bindschaedler, E. Doelker, P. Buri, and R. Gurny. Aqueous nanodispersions prepared by a salting-out process. Int. J. Pharm. 87:239–246 (1992). doi:10.1016/0378-5173(92)90248-Z.Google Scholar
  98. 98.
    E. Allémann, J. C. Leroux, R. Gurny, and E. Doelker. In vitro extended-release properties of drug-loaded poly(DL-lactic acid) nanoparticles produced by a salting-out procedure. Pharm. Res. 10:1732–1737 (1993). doi:10.1023/A:1018970030327.PubMedGoogle Scholar
  99. 99.
    E. Allémann, E. Doelker, and R. Gurny. Drug loaded poly(lactic acid) nanoparticles produced by a reversible salting-out process: purification of an injectable dosage form. Eur. J. Pharm. Biopharm. 39:13–18 (1993).Google Scholar
  100. 100.
    N. Wang, and X. S. Wu. Preparation and characterization of agarose hydrogel nanoparticles for protein and peptide drug delivery. Pharm. Dev. Technol. 2:135–142 (1997). doi:10.3109/10837459709022618.PubMedGoogle Scholar
  101. 101.
    H. Tokumitsu, H. Ichikawa, Y. Fukumori, J. Hiratsuka, Y. Sakurai, and T. Kobayashi. Preparation of gadopentenate-loaded nanoparticles for gadolinium neutron capture therapy of cancer using a novel emulsion droplet coalescence technique. Proc. 2nd world meeting APGI/APV, Paris, France, 25–28 Mai 1998, pp. 641–642 (1998).Google Scholar
  102. 102.
    C. Pinto-Reis, A. J. Ribeiro, F. Veiga, R. J. Neufeld, and C. Damgé. Polyelectrolyte biomaterial interactions provide nanoparticulate carrier for oral insulin delivery. Drug. Deliv. 15(2):127–139 (2008). doi:10.1080/10717540801905165.Google Scholar
  103. 103.
    P. Couvreur, B. Kante, M. Roland, P. Guiot, P. Baudhuin, and P. Speiser. Poly(cyanoacrylate) nanoparticles as potential lysosomotropic carriers: preparation, morphological and sorptive properties. J. Pharm. Pharmacol. 31:331–332 (1979).PubMedGoogle Scholar
  104. 104.
    C. Chauvierre, D. Labarre, P. Couvreur, and C. Vauthier. A radical emulsion polymerization of alkylcyanoacrylates initiated by the redox system dextran–cerium IV in acidic aqueous conditions. Macromolecules. 36:6018–6027 (2003). doi:10.1021/ma034097w.Google Scholar
  105. 105.
    I. Bertholon, S. Lesieur, D. Labarre, M. Besnard, and C. Vauthier. Characterization of dextran-poly(isobutylcyanoacrylate) copolymers obtained by redox radical and anionic emulsion polymerization. Macromolecules. 39:3559–3567 (2006). doi:10.1021/ma060338z.Google Scholar
  106. 106.
    I. Bertholon, C. Vauthier, and D. Labarre. Complement Activation by core-shell poly(isobutylcyanoacrylate)-polysaccharide nanoparticles: influences of surface morphology, length and type of polysaccharide. Pharm. Res. 23:1313–1323 (2006). doi:10.1007/s11095-006-0069-0.PubMedGoogle Scholar
  107. 107.
    M. R. Gasco, and M. Trotta. Nanoparticles from microemulsions. Int. J. Pharm. 29:267–268 (1986). doi:10.1016/0378-5173(86)90125-0.Google Scholar
  108. 108.
    S. Watnasirichaikul, M. N. Davies, R. Rades, and I. G. Tucker. Preparation of biodegradable insulin nanocapsules from biocompatible microemulsions. Pharm. Res. 17:684–689 (2000). doi:10.1023/A:1007574030674.PubMedGoogle Scholar
  109. 109.
    K. Bouchemal, F. Couenne, S. Briançon, H. Fessi, and M. Tayakout. Stability studies on colloidal suspensions of polyurethane nanocapsules. J. Nanosci. Nanotechno. 6:3187–3192 (2006). doi:10.1166/jnn.2006.468.Google Scholar
  110. 110.
    C. Vauthier, D. Labarre, and G. Ponchel. Design aspects of poly(alkylcyanoacrylate) nanoparticles for drug delivery. J. Drug. Targeting. 15:641–663 (2007). doi:10.1080/10611860701603372.Google Scholar
  111. 111.
    C. Pinto-Reis, R. J. Neufeld, A. J. Ribeiro, and F. Veiga. Nanoencapsulation II. Biomedical applications and current status of peptide and protein nanoparticulate delivery systems. Nanomedicine. 2(2):53–65 (2006).PubMedGoogle Scholar
  112. 112.
    G. E. Ghanem, C. Joubran, R. Arnould, F. Lejeune, and J. Fruhling. Labelled polycyanoacrylate nanoparticles for human in vivo use. Appl. Radiat. Isotopes. 44(9):1219–1224 (1993). doi:10.1016/0969-8043(93)90068-L.Google Scholar
  113. 113.
    R. K. Kulkarni, D. E. Bartak, and F. Leonard. Initiation of polymerization of alkyl 2-cyanoacrylates in aqueous solutions of glycine and its derivatives. J. Polym. Sci. A. Polym. Chem. 9(10):2977–2981 (1971).Google Scholar
  114. 114.
    S. J. Douglas, L. Illum, and S. S. Davis. Particle size and size distribution of poly(butyl 2-cyanoacrylate) nanoparticles. II. Influence of stabilizers. J. Colloid Interface Sci. 103:154–163 (1985). doi:10.1016/0021-9797(85)90087-6.Google Scholar
  115. 115.
    M. T. Peracchia, C. Vauthier, M. Popa, F. Puisieux, and P. Couvreur. An investigation on the formation of sterically stabilized PEG-PIBCA nanoparticles by chemical grafting of PEG during the polymerization of isobutylcyanoacrylate. STP Pharma Sci. 7:514–521 (1997).Google Scholar
  116. 116.
    C. Chauvierre, D. Labarre, P. Couvreur, and C. Vauthier. Plug-in spectrometry with optical fibers as a novel analytical tool for nanoparticles technology: application to the investigation of the emulsion polymerization of the alkylcyanoacrylate. J. Nanopart. Res. 5:365–371 (2003). doi:10.1023/A:1025575730542.Google Scholar
  117. 117.
    S. C. Yang, H. X. Ge, Y. Hu, X. Q. Jiang, and C. Z. Yang. Formation of positively charged poly(butyl cyanoacrylate) nanoparticles stabilized by chitosan. Colloid Polym. Sci. 278:285–292 (2000). doi:10.1007/s003960050516.Google Scholar
  118. 118.
    D. Labarre, C. Vauthier, C. Chauvierre, B. Petri, R. Müller, and M. M. Chehimi. Interactions of blood proteins with poly(isobutylcyanoacrylate) nanoparticles decorated with a polysaccharidic brush. Biomaterials. 26(24):5075–5084 (2005). doi:10.1016/j.biomaterials.2005.01.019.PubMedGoogle Scholar
  119. 119.
    I. Bravo-Osuna, G. Ponchel, and C. Vauthier. Tuning of shell and core characteristics of chitosan-decorated acrylic nanoparticles. Eur. J. Pharm. Sci. 30:143–154 (2007). doi:10.1016/j.ejps.2006.10.007.PubMedGoogle Scholar
  120. 120.
    I. Bravo Osuna, C. Vauthier, and G. Ponchel. Core-shell polymer nanoparticle formulations for the oral administration of peptides and proteins. In A. O. Hartmann, and L. K. Newmann (eds.), Drugs: Approval, Evaluation, Delivery and Control, Novapublishers, New York, 2008, pp. 35–71.Google Scholar
  121. 121.
    M. T. Peracchia, C. Vauthier, C. Passirani, P. Couvreur, and D. Labarre. Complement consumption by poly(ethylene glycol) in different configurations chemically coupled to polyisobutylcyanoacrylate nanoparticles. Life Sci. 61:749–761 (1997). doi:10.1016/S0024-3205(97)00539-0.PubMedGoogle Scholar
  122. 122.
    C. Passirani, G. Barratt, J. P. Devissaguet, and D. Labarre. Long-circulating nanoparticles bearing heparin or dextran covalently bound to poly(methyl methacrylate). Pharm. Res. 15(7):1046–1050 (1998). doi:10.1023/A:1011930127562.PubMedGoogle Scholar
  123. 123.
    I. Bravo-Osuna, C. Vauthier, A. Farabollini, G. F. Palmieri, and G. Ponchel. Mucoadhesion mechanism of chitosan and thiolated chitosan-poly(isobutyl cyanoacrylate) core-shell nanoparticles. Biomaterials. 28(13):2233–2243 (2007). doi:10.1016/j.biomaterials.2007.01.005.PubMedGoogle Scholar
  124. 124.
    I. Bravo-Osuna, C. Vauthier, H. Chacun, and G. Ponchel. Specific permeability modulation of intestinal paracellular pathway by chitosan-poly(isobutylcyanoacrylate) core-shell nanoparticles. Eur. J. Pharm. Biopharm. 69:436–444 (2008). doi:10.1016/j.ejpb.2007.12.012.PubMedGoogle Scholar
  125. 125.
    M. Aboubakar, F. Puisieux, P. Couvreur, M. Deyme, and C. Vauthier. Study of the mechanism of insulin encapsulation in poly(isobutylcyanoacrylate) nanocapsules obtained by interfacial polymerization. J. Biomed. Mater. Res. 47:568–576 (1999). doi:10.1002/(SICI)1097-4636(19991215)47:4<568::AID-JBM14>3.0.CO;2-X.PubMedGoogle Scholar
  126. 126.
    M. Gallardo, G. Couarraze, B. Denizot, L. Treupel, P. Couvreur, and F. Puisieux. Study of the mechanism of formation of nanoparticles and nanocapsules of poly(isobutyl-2-cyanoacrylate). Int. J. Pharm. 100:55–64 (1993). doi:10.1016/0378-5173(93)90075-Q.Google Scholar
  127. 127.
    G. Puglisi, M. Fresta, G. Giammona, and C. A. Ventura. Influence of the preparation conditions on poly(ethylcyanoacrylate) nanocapsule formation. Int. J. Pharm. 125:283–287 (1995). doi:10.1016/0378-5173(95)00142-6.Google Scholar
  128. 128.
    N. Altinbas, C. Fehmer, A. Terheiden, A. Shukla, H. Rehage, and C. Mayer. Alkylcyanoacrylate nanocapsules prepared from mini-emulsions: a comparison with the conventional approach. J. Microencapsul. 23(5):567–581 (2006). doi:10.1080/02652040600776424.PubMedGoogle Scholar
  129. 129.
    C. Y. Huang, C. M. Chen, and Y. D. Lee. Synthesis of high loading and encapsulation efficient paclitaxel-loaded poly(n-butyl cyanoacrylate) nanoparticles via miniemulsion. Int. J. Pharm. 338(1–2):267–275 (2007). doi:10.1016/j.ijpharm.2007.01.052.PubMedGoogle Scholar
  130. 130.
    K. Krauel, N. M. Davies, S. Hook, and T. Rades. Using different structure types of microemulsions for the preparation of poly(alkylcyanoacrylate) nanoparticles by interfacial polymerization. J. Control. Release. 106:76–87 (2005). doi:10.1016/j.jconrel.2005.04.013.PubMedGoogle Scholar
  131. 131.
    I. Montasser, H Fessi, S. Briançon, and J. Lieto. Procédé de préparation de particules colloïdales sous forme de nanocapsules. World Patent 0168235 (2001).Google Scholar
  132. 132.
    I. Montasser, S. I. Briançon, and H. Fessi. The effect of monomers on the formulation of polymeric nanocapsules based on polyureas and polyamides. Int. J. Pharm. 335(1–2):176–179 (2007). doi:10.1016/j.ijpharm.2006.11.011.PubMedGoogle Scholar
  133. 133.
    K. Bouchemal, F. Couenne, S. Briançon, H. Fessi, and M. Tayakout. Polyamides nanocapsules: modelling and wall thickness estimation. AIChE J. 52(6):1–10 (2006).Google Scholar
  134. 134.
    H. Fessi, F. Puisieux, J.-P. Devissaguet, N. Ammoury, and S. Benita. Nanocapsule formation by interfacial deposition following solvent displacement. Int. J. Pharm. 55:R1–R4 (1989). doi:10.1016/0378-5173(89)90281-0.Google Scholar
  135. 135.
    R. A. Jain. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials. 21:2475–2490 (2000). doi:10.1016/S0142-9612(00)00115-0.PubMedGoogle Scholar
  136. 136.
    T. Delair. Colloidal particles: elaboration from preformed polymers. In A. Elaissari (ed.), Colloidal Biomolecules, Biomaterials and Biomedical Applications, Marcel Dekker, New York, 2004, pp. 329–347.Google Scholar
  137. 137.
    O. Thioune, H. Fessi, J. P. Devissaguet, and F. Puisieux. Preparation of pseudolatex by nanoprecipitation: Influence of the solvent nature on intrinsic viscosity and interaction constant. Int. J. Pharm. 146:233–238 (1997). doi:10.1016/S0378-5173(96)04830-2.Google Scholar
  138. 138.
    P. Legrand, S. Lesieur, A. Bochot, R. Gref, W. Raatjes, G. Barratt, and C. Vauthier. Influence of polymer behaviour in organic solution on the production of polylactide nanoparticles by nanoprecipitation. Int. J. Pharm. 344:33–43 (2007). doi:10.1016/j.ijpharm.2007.05.054.PubMedGoogle Scholar
  139. 139.
    H. Murakami, M. Kobayashi, H. Takeuchi, and Y. Kawashima. Preparation of poly(DL-lactide-co-glycolide) nanoparticles by modified spontaneous emulsification solvent diffusion method. Int. J. Pharm. 187(2):143–152 (1999). doi:10.1016/S0378-5173(99)00187-8.PubMedGoogle Scholar
  140. 140.
    M. T. Peracchia, C. Vauthier, D. Desmaël, A. Gulik, J. C. Dedieu, M. Demoy, J. D’Angelo, and P. Couvreur. Pegylated nanoparticles from a novel methoxypolyethyleneglycol cyanoacrylate-hexadecyl cyanoacrylate amphiphilic copolymer. Pharm. Res. 15:550–556 (1998). doi:10.1023/A:1011973625803.PubMedGoogle Scholar
  141. 141.
    C. Duclairoir, E. Nakache, H. Marchais, and A. M. Orecchioni. Formation of gliadin nanoparticles: influence of the solubility parameter of the protein solvent. Colloid Polym. Sci. 276:321–327 (1998). doi:10.1007/s003960050246.Google Scholar
  142. 142.
    M. Skiba, D. Wouessidjewe, F. Puisieux, D. Duchène, and A. Gulik. Characterization of amphiphilic fl-cyclodextrin nanospheres. Int. J. Pharm. 142:121–124 (1996). doi:10.1016/0378-5173(96)04653-4.Google Scholar
  143. 143.
    H. Lannibois-Drean. Des molécules hydrophobes dans l’eau: fabrication de nanoparticles par precipitation. Ph.D. Université Pierre et Marie Curie, Paris, France (1995).Google Scholar
  144. 144.
    H. Lannibois, A. Hasmy, R. Botet, O. Aguerre Chariol, and B. Cabane. Surfactant limited aggregation of hydrophobic molecules in water. J. Phys. II. 7:319–342 (1997). doi:10.1051/jp2:1997128.Google Scholar
  145. 145.
    T. Niwa, T. Takeuchi, T. Hino, N. Kunou, and Y. Kawashima. Preparations of biodegradable nanospheres of water-soluble and insoluble drugs with d,llactide/glycolide copolymer by a novel spontaneous emulsification solvent diffusion method and the drug release behavior. J. Control. Release. 25:89–98 (1993). doi:10.1016/0168-3659(93)90097-O.Google Scholar
  146. 146.
    H. Murakami, M. Kobayashi, H. Takeuchi, and Y. Kawashima. Further application of a modified spontaneous emulsification solvent diffusion method to various types of PLGA and PLA polymers for preparation of nanoparticles. Powder Technol. 107:137–143 (2000).Google Scholar
  147. 147.
    L. Peltonen, J. Anitta, S. Hyvönen, M. Kajalainen, and J. Hirvonen. Improved entrapment efficiency of hydrophilic drug substance during nanoprecipitation of poly(l)lactide nanoparticles. AAPS PharmSciTech. 5(1):1–6 (2004). doi:10.1007/BF02830584.Google Scholar
  148. 148.
    I. Limayem, C. Charcosset, and H. Fessi. Purification of nanoparticle suspensions by a concentration/diafiltration process. Sep. Purif. Technol. 38:1–9 (2004). doi:10.1016/j.seppur.2003.10.002.Google Scholar
  149. 149.
    F. Némati, C. Dubernet, H. Fessi, A. C. Verdière, M. F. Poupon, F. Puisieux, and P. Couvreur. Reversion of multidrug resistance using nanoparticles in vitro: influence of the nature of the polymer. Int. J. Pharm. 138:237–246 (1996). doi:10.1016/0378-5173(96)04559-0.Google Scholar
  150. 150.
    U. Bilati, E. Allémann, and E. Doelker. Nanoprecipitation Versus Emulsion-based techniques for the encapsulation of proteins into biodegradable nanoparticles and process-related stability issues. AAPS PharmSciTech. 6(4):E594–E604 (2005). doi:10.1208/pt060474.PubMedGoogle Scholar
  151. 151.
    J. M. Barichello, M. Morishita, K. Takayama, and T. Nagai. Encapsulation of hydrophilic and lipophilic drugs in PLGA nanoparticles by the nanoprecipitation method. Drug. Dev. Ind. Pharm. 25:471–476 (1999). doi:10.1081/DDC-100102197.PubMedGoogle Scholar
  152. 152.
    J. Molpeceres, M. Guzman, M. R. Aberturas, M. Chacon, and L. Berges. Application of central composite design to the preparation of polycaprolactone nanoparticles by solvent displacement. J. Pharm. Sci. 85:206–13 (1996). doi:10.1021/js950164r.PubMedGoogle Scholar
  153. 153.
    Y. Zhang, and R.-X. Zhuo. Synthesis and in vitro drug release behavior of amphiphilic triblock copolymer nanoparticles based on poly (ethylene glycol) and polycaprolactone. Biomaterials. 26:6736–6742 (2005). doi:10.1016/j.biomaterials.2005.03.045.PubMedGoogle Scholar
  154. 154.
    P. Arbós, M. A. Campanero, M. A. Arangoa, M. J. Renedo, and J. M. Irache. Influence of the surface characteristics of PVM/MA nanoparticles on their bioadhesive properties. J. Control Release. 89:19–30 (2003). doi:10.1016/S0168-3659(03)00066-X.PubMedGoogle Scholar
  155. 155.
    M. Skiba, C. Morvan, D. Duchene, F. Puisieux, and D. Wouessidjewe. Evaluation of gastrointestinal behaviour in the rat of amphiphilic β-cyclodextrin nanocapsules, loaded with indomethacin. Int. J. Pharm. 126:275–279 (1995). doi:10.1016/0378-5173(95)04121-4.Google Scholar
  156. 156.
    E. Lemos-Senna, D. Wouessidjewe, S. Lesieur, F. Puisieux, G. Couarraze, and D. Duchêne. Evaluation of the hydrophobic drug loading characteristics in nanoprecipitated amphiphilic cyclodextrin nanospheres. Pharm. Dev. Technol. 3(1):85–94 (1998). doi:10.3109/10837459809028482.PubMedGoogle Scholar
  157. 157.
    E. Lemos-Senna, D. Wouessidjewe, S. Lesieur, and D. Duchêne. Preparation of amphiphilic cyclodextrin nanospheres using the emulsification solvent evaporation method. Influence of the surfactant on preparation and hydrophobic drug loading. Int. J. Pharm. 170:119–128 (1998). doi:10.1016/S0378-5173(98)00147-1.Google Scholar
  158. 158.
    K. A. Howard, and J. Kjems. Polycation-based nanoparticle delivery for improved RNA interference therapeutics. Expert. Opin. Biol. Ther. 7(12):1811–1822 (2007). doi:10.1517/14712598.7.12.1811.PubMedGoogle Scholar
  159. 159.
    M. Rajaonarivony, C. Vauthier, G. Couarraze, F. Puisieux, and P. Couvreur. Development of a new drug carrier made from alginate. J. Pharm. Sci. 82:912–918 (1993). doi:10.1002/jps.2600820909.PubMedGoogle Scholar
  160. 160.
    C. Schatz, A. Domard, C. Viton, C. Pichot, and T. Delair. Versatile and efficient formation of colloids of biopolymer-based polyelectrolyte complexes. Biomacromolecules. 5(5):1882–1892 (2004). doi:10.1021/bm049786+.PubMedGoogle Scholar
  161. 161.
    A. Drogoz, L. David, C. Rochas, A. Domard, and T. Delair. Polyelectrolyte complexes from polysaccharides: formation and stoichiometry monitoring. Langmuir. 23(22):10950–10958 (2007). doi:10.1021/la7008545.PubMedGoogle Scholar
  162. 162.
    A. Drogoz, S. Munier, B. Verrier, L. David, A. Domard, and T. Delair. Towards biocompatible vaccine delivery systems: interactions of colloidal PECs based on polysaccharides with HIV-1 p24 antigen. Biomacromolecules. 9(2):583–591 (2008). doi:10.1021/bm701154h.PubMedGoogle Scholar
  163. 163.
    R. Gref, C. Amiel, K. Molinard, S. Daoud-Mahammed, B. Sébille, B. Gillet c, J-C. Beloeil, C. Ringard, V. Rosilio, J. Poupaert, and P. Couvreur. New self-assembled nanogels based on host–guest interactions: Characterization and drug loading. J. Control. Release. 111:316–324 (2006). doi:10.1016/j.jconrel.2005.12.025.PubMedGoogle Scholar
  164. 164.
    S. Daoud-Mahammed, C. Ringard-Lefebvre, N. Razzouq, V. Rosilio, B. Gillet, P. Couvreur, C. Amiel, and R. Gref. Spontaneous association of hydrophobized dextran and poly-β-cyclodextrin into nanoassemblies. Formation and interaction with a hydrophobic drug. J. Colloid Interface Sci. 307(1):83–93 (2007). doi:10.1016/j.jcis.2006.10.072.PubMedGoogle Scholar
  165. 165.
    S. De, and D. Robinson. Polymer relationships during preparation of chitosan-alginate and poly-l-lysine-alginate nanospheres. J. Control. Release. 89(1):101–12 (2003). doi:10.1016/S0168-3659(03)00098-1.PubMedGoogle Scholar
  166. 166.
    K. L. Douglas, and M. Tabrizian. Effect of experimental parameters on the formation of alginate-chitosan nanoparticles and evaluation of their potential application as DNA carrier. J. Biomater. Sci. Polym. E. 16(1):43–56 (2005). doi:10.1163/1568562052843339.Google Scholar
  167. 167.
    B. Sarmento, A. J. Ribeiro, F. Veiga, D. C. Ferreira, and R. J. Neufeld. Insulin-loaded nanoparticles are prepared by alginate ionotropic pre-gelation followed by chitosan polyelectrolyte complexation. J Nanosci. Nanotechnol. 7(8):2833–2841 (2007). doi:10.1166/jnn.2007.609.PubMedGoogle Scholar
  168. 168.
    I. Aynié. Vectorisation d’oligonucleotides antisens par des nanoparticules d’alginate. Ph.D. Université Paris Sud-11. 01 February 1999.Google Scholar
  169. 169.
    I. Aynié, C. Vauthier, H. Chacun, E. Fattal, and P. Couvreur. Sponge-like alginate nanoparticles as a new system for the delivery of antisense oligonucleotides. Antisense Nucleic Acid Drug Dev. 9:301–312 (1999).PubMedGoogle Scholar
  170. 170.
    M. González Ferreiro, L. Tillman, G. Hardee, and R. Bodmeier. Characterization of alginate/poly-L-lysine particles as antisense oligonucleotide carriers. Int. J. Pharm. 239(1–2):47–59 (2002). doi:10.1016/S0378-5173(02)00030-3.PubMedGoogle Scholar
  171. 171.
    P. Calvo, C. Remuñan-Lopez, J. L. Vila-Jato, and M. J. Alonso. Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharm. Res. 14:1431–1436 (1997). doi:10.1023/A:1012128907225.PubMedGoogle Scholar
  172. 172.
    P. Calvo, C. Remuñan-Lopez, J. L. Vila-Jato, and M. J. Alonso. Novel hydrophilic chitosan-polyethylene ocide nanoparticles as protein carriers. J. Appl. Polym. Sci. 63:125–132 (1997). doi:10.1002/(SICI)1097-4628(19970103)63:1<125::AID-APP13>3.0.CO;2-4.Google Scholar
  173. 173.
    T. López-León, E. L. Carvalho, B. Seijo, J. L. Ortega-Vinuesa, and D. Bastos-González. Physicochemical characterization of chitosan nanoparticles: electrokinetic and stability behavior. J. Colloid Interf. Sci. 283(2):344–351 (2005). doi:10.1016/j.jcis.2004.08.186.Google Scholar
  174. 174.
    R. Fernández-Urrusuno, P. Calvo, C. Remuñán-López, J. L. Vila-Jato, and M. J. Alonso. Enhancement of nasal absorption of insulin using chitosan nanoparticles. Pharm. Res. 16(10):1576–1581 (1999). doi:10.1023/A:1018908705446.PubMedGoogle Scholar
  175. 175.
    M. Cetin, Y. Aktas, I. Vural, Y. Capan, L.A. Dogan, M. Duman, and T. Dalkara. Preparation and in vitro evaluation of bFGF-loaded chitosan nanoparticles. Drug. Deliv. 14(8):525–529 (2007). doi:10.1080/10717540701606483.PubMedGoogle Scholar
  176. 176.
    K. A. Janes, P. Calvo, and M. J. Alonso. Polysaccharide colloidal particles as delivery systems for macromolecules. Adv. Drug Deliv. Rev. 47(1):83–97 (2001). doi:10.1016/S0169-409X(00)00123-X.PubMedGoogle Scholar
  177. 177.
    H. Kastar, and H. O. Alpar. Development and characterisation of chitosan nanoparticles for siRNA delivery. J. Control. Release. 115(2):216–225 (2006). doi:10.1016/j.jconrel.2006.07.021.Google Scholar
  178. 178.
    T. H. Dung, S. R. Lee, S. D. Han, S. J. Kim, Y. M. Ju, M. S. Kim, and H. Yoo. Chitosan-TPP nanoparticle as a release system of antisense oligonucleotide in the oral environment. J. Nanosci. Nanotechnol. 7(11):3695–3699 (2007). doi:10.1166/jnn.2007.041.PubMedGoogle Scholar
  179. 179.
    C. Pegro, D. Torres, and M. J. Alonso. The potential of chitosan for the oral administration of peptides. Expert. Opin. Drug. Deliv. 2(5):843–854 (2005). doi:10.1517/17425247.2.5.843.Google Scholar
  180. 180.
    N. Csaba, M. Garcia-Fuentes, and M. J. Alonso. The performance of nanocarriers for transmucosal drug delivery. Expert. Opin. Drug. Deliv. 3(4):463–478 (2006). doi:10.1517/17425247.3.4.463.PubMedGoogle Scholar
  181. 181.
    S. M. Moghimi, A. C. Hunter, and J. C. Murray. Nanomedicine: current status and future prospects. FASEB J. 19:311–330 (2005). doi:10.1096/fj.04-2747rev.PubMedGoogle Scholar
  182. 182.
    A. Vonabourg, C. Passirani, P. Saulnier, and J. P. Benoit. Parameters influencing the stealthiness of colloidal drug delivery systems. Biomaterials. 27:4356–4373 (2006). doi:10.1016/j.biomaterials.2006.03.039.Google Scholar
  183. 183.
    L. Nobs, F. Buchegger, R. Gurny, and E. Allemann. Poly(lactic acid) nanoparticles labeled with biologically active Neutravidin for active targeting. Eur. J. Pharm. Biopharm. 58(3):483–490 (2004). doi:10.1016/j.ejpb.2004.04.006.PubMedGoogle Scholar
  184. 184.
    L. Nobs, F. Buchegger, R. Gurny, and E. Allemann. Current methods for attaching targeting ligands to liposomes and nanoparticles. J. Pharm. Sci. 93(8):1980–1992 (2004). doi:10.1002/jps.20098.PubMedGoogle Scholar
  185. 185.
    B. Stella, S. Arpicco, M. T. Peracchia, D. Desmaële, J. Hoebeke, M. Renoir, J. D’Angelo, L. Cattel, and P. Couvreur. Design of folic acid-conjugated nanoparticles for drug targeting. J. Pharm. Sci. 89(11):1452–1464 (2000). doi:10.1002/1520-6017(200011)89:11<1452::AID-JPS8>3.0.CO;2-P.PubMedGoogle Scholar
  186. 186.
    Y. De Kozak, K. Andrieux, H. Villarroya, C. Klein, B. Thillaye-Goldenberg, M. C. Naud, E. Garcia, and P. Couvreur. Intraocular injection of tamoxifen-loaded nanoparticles: a new treatment of experimental autoimmune uveoretinitis. Eur. J. Immunol. 34(12):3702–3712 (2004). doi:10.1002/eji.200425022.PubMedGoogle Scholar
  187. 187.
    D. W. Barlet, and M. E. Davis. Physicochemical and biological characterization of targeted nucleic acid-containing nanoparticles. Bioconjug. Chem. 18:456–468 (2007). doi:10.1021/bc0603539.Google Scholar
  188. 188.
    R. Gref, P. Couvreur, G. Barratt, and E. Mysiakine. Surface-engineered nanoparticles for multiple ligand coupling. Biomaterials. 24(24):4529–4537 (2003). doi:10.1016/S0142-9612(03)00348-X.PubMedGoogle Scholar
  189. 189.
    L. Illum, L. O. Jacobsen, R. H. Müller, R. Mak, and S. S. Davis. Surface characteristics and the interaction of colloidal particles with mouse peritoneal macrophages. Biomaterials. 8:113–117 (1987). doi:10.1016/0142-9612(87)90099-8.PubMedGoogle Scholar
  190. 190.
    P. Calvo, B. Gouritin, H. Chacun, D. Desmaële, J. D’Angelo, J. P. Noel, G. Georgin, E. Fattal, J. P. Andreux, and P. Couvreur. Long-circulating PEGylated polycyanoacrylate nanoparticles as new drug carrier for brain delivery. Pharm. Res. 18(8):1157–1166 (2001). doi:10.1023/A:1010931127745.PubMedGoogle Scholar
  191. 191.
    J. Kreuter. Influence of the surface properties on nanoparticle-mediated transport of drugs to the brain. J. Nanosci. Nanotechnol. 4:484–488 (2004). doi:10.1166/jnn.2003.077.PubMedGoogle Scholar
  192. 192.
    L. Grislain, P. Couvreur, V. Lenaerts, M. Roland, D. Deprez-Decampeneere, and P. Speiser. Pharmacokinetics and distribution of a biodegradable drug-carrier. Int. J. Pharm. 15:335–345 (1983). doi:10.1016/0378-5173(83)90166-7.Google Scholar
  193. 193.
    A. Béduneau, P. Saulnier, and J. P. Benoit. Active targeting of brain tumors using nanocarriers. Biomaterials. 28(33):4947–4967 (2007). doi:10.1016/j.biomaterials.2007.06.011.PubMedGoogle Scholar
  194. 194.
    I. Bertholon, G. Ponchel, D. Labarre, P. Couvreur, and C. Vauthier. Bioadhesive properties of poly(alkylcyanoacrylate) nanoparticles coated with polysaccharide. J. Nanosci. Nanotechnol. 6(9–10):3102–3109 (2006). doi:10.1166/jnn.2006.418.PubMedGoogle Scholar
  195. 195.
    K. Albrecht, and A. Bernkop-Schnürch. Thiomers: forms, functions and applications to nanomedicine. Nanomedicine. 2(1):41–50 (2007). doi:10.2217/17435889.2.1.41.PubMedGoogle Scholar
  196. 196.
    K. Bouchemal. New challenges for pharmaceutical formulations and drug delivery systems characterization using isothermal titration calorimetry. Drug Discov. Today. 13(21–22):960–972 (2008). doi:10.1016/j.drudis.2008.06.004.PubMedGoogle Scholar
  197. 197.
    M. E. Martinez-Barbosa, L. Bouteiller, S. Cammas-Marion, V. Montembault, L. Fontaine, and G. Ponchel. Synthesis and ITC characterization of novel nanoparticles constituted by poly(gamma-benzyl L-glutamate)-beta-cyclodextrin. J. Mol. Recognit. 21(3):169–178 (2008). doi:10.1002/jmr.882.Google Scholar
  198. 198.
    Y. Aktaş, M. Yemisci, K. Andrieux, R. N. Gürsoy, M. J. Alonso, E. Fernandez-Megia, R. Novoa-Carballal, E. Quiñoá, R. Riguera, M. F. Sargon, H. H. Celik, A. S. Demir, A. A. Hincal, T. Dalkara, Y. Capan, and P. Couvreur. Development and brain delivery of chitosan-PEG nanoparticles functionalized with the monoclonal antibody OX26. Bioconjug. Chem. 16(6):1503–1511 (2005). doi:10.1021/bc050217o.PubMedGoogle Scholar
  199. 199.
    Bioalliance Pharma: Doxorubicin Transdrug®: Phase II/III http://www.bioalliancepharma.com Assessed 28 August 2008.
  200. 200.
    M. J. Hawkins, P. Soon-Shiong, and N. Desai. Protein nanoparticles as drug carriers in clinical medicine. Adv. Drug. Deliv. Rev. 60:876–885 (2008). doi:10.1016/j.addr.2007.08.044.PubMedGoogle Scholar
  201. 201.
    A. P. Colombo, S. Briancon, J. Lieto, and H. Fessi. Project, design and use of a pilot plant for nanocapsule production. Drug. Dev. Ind. Pharm. 27(10):1063–1072 (2001). doi:10.1081/DDC-100108369.PubMedGoogle Scholar
  202. 202.
    S. A. Galindo-Rodriguez, F. Puel, S. Briançon, E. Allémann, E. Doelker, and H. Fessi. Comparative scale-up of three methods for producing ibuprofen-loaded nanoparticles. Eur. J. Pharm. Sci. 25:357–367 (2005). doi:10.1016/j.ejps.2005.03.013.PubMedGoogle Scholar
  203. 203.
    S. Briançon, H. Fessi, F. Lecomte, and J. Lieto. Study of an original production process of nanoparticles by precipitation, second ed. European Congress of Chemical Engineering, Montpellier, France (1999).Google Scholar
  204. 204.
    P. Tewa-Tagne, S. Briançon, and H. Fessi. Preparation of redispersible dry nanocapsules by means of spray-drying: development and characterisation. Eur. J. Pharm. Sci. 30:124–135 (2007). doi:10.1016/j.ejps.2006.10.006.PubMedGoogle Scholar
  205. 205.
    S. Watnasirichaikul, T. Rades, I. G. Tucker, and N. M. Davies. In-vitro release and oral bioactivity of insulin in diabetic rats using nanocapsules dispersed in biocompatible microemulsion. J. Pharm. Pharmacol. 54:473–480 (2002). doi:10.1211/0022357021778736.PubMedGoogle Scholar
  206. 206.
    T. Govender, S. Stolnik, M. C. Garnett, L. Illum, and S. S. Davis. PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug. J. Control. Release. 57:171–185 (1999). doi:10.1016/S0168-3659(98)00116-3.PubMedGoogle Scholar
  207. 207.
    S. K. Sahoo, J. Panyam, S. Prabha, and V. Labhasetwar. Residual polyvinyl alcohol associated with poly (DL,-lactide-coglycolide) nanoparticles affects their physical properties and cellular uptake. J. Control. Release. 82:105–114 (2002). doi:10.1016/S0168-3659(02)00127-X.PubMedGoogle Scholar
  208. 208.
    C. A. Nguyen, E. Allemann, G. Schwach, E. Doelker, and R. Gurny. Synthesis of a novel fluorescent poly (DL,-lactide) endcapped with 1-pyrenebutanol used for the preparation of nanoparticles. Eur. J. Pharm. Sci. 20:217–222 (2003). doi:10.1016/S0928-0987(03)00196-9.PubMedGoogle Scholar
  209. 209.
    I. Bravo-Osuna, T. Schmitz, A. Bernkop-Schnürch, C. Vauthier, and G. Ponchel. Elaboration and characterization of thiolated chitosan-coated acrylic nanoparticles. Int. J. Pharm. 316:170–175 (2006). doi:10.1016/j.ijpharm.2006.02.037.PubMedGoogle Scholar
  210. 210.
    P. Beck, D. Scherer, and J. Kreuter. Separation of drug-loaded nanoparticles from free drug by gel filtration. J. Microencapsul. 7:491–496 (1990). doi:10.3109/02652049009040471.PubMedGoogle Scholar
  211. 211.
    J. Zahka, and L. Mir. Ultrafiltration of latex emulsions. Chem. Eng. Prog. 73:53–55 (1977).Google Scholar
  212. 212.
    G. Tishchenko, K. Luetzow, J. Schauer, W. Albrecht, and M. Bleha. Purification of polymer nanoparticles by diafiltration with polysulfone/hydrophilic polymer blend membranes. Sep. Purif. Technol. 22–23:403–415 (2001). doi:10.1016/S1383-5866(00)00177-5.Google Scholar
  213. 213.
    G. Tishchenko, R. Hilke, W. Albrecht, J. Schauer, K. Luetzow, Z. Pientka, and M. Bleha. Ultrafiltration and microfiltration membranes in latex purification by diafiltration with suction. Sep. Purif. Technol. 30:57–68 (2003). doi:10.1016/S1383-5866(02)00120-X.Google Scholar
  214. 214.
    M. T. Peracchia, C. Vauthier, F. Puisieux, and P. Couvreur. Development of sterically stabilized poly(isobutyl 2-cyanoacrylate) nanoparticles by chemical coupling of poly(ethylene glycol). J. Biomed. Mater. Res. 34(3):317–326 (1997). doi:10.1002/(SICI)1097-4636(19970305)34:3<317::AID-JBM6>3.0.CO;2-N.PubMedGoogle Scholar
  215. 215.
    U. B. Kompella, N. Bandi, and S. P. Ayalasomayajula. Poly (lactic acid) nanoparticles for sustained release of budesonide. Drug Deliv. Technol. 1:1–7 (2001).Google Scholar
  216. 216.
    S. Prabha, W. -Z. Zhou, J. Panyam, and V. Labhasetwar. Size dependency of nanoparticle-mediated gene transfection: studies with fractionated nanoparticles. Int. J. Pharm. 244:105–115 (2002). doi:10.1016/S0378-5173(02)00315-0.PubMedGoogle Scholar
  217. 217.
    S. Dreis, F. Rothweiler, M. Michaelis, J. Cinatl Jr, J. Kreuter, and K. Langer. Preparation, characterisation and maintenance of drug efficacy of doxorubicin-loaded human serum albumin (HSA) nanoparticles. Int. J. Pharm. 341(1–2):207–214 (2007). doi:10.1016/j.ijpharm.2007.03.036.PubMedGoogle Scholar
  218. 218.
    M. Hamoudeh, A. Al Faraj, E. Canet-Soulas, F. Bessueille, D. Léonard, and H. Fessi. Elaboration of PLLA-based superparamagnetic nanoparticles: characterization, magnetic behaviour study and in vitro relaxivity evaluation. Int. J. Pharm. 338(1–2):248–257 (2007). doi:10.1016/j.ijpharm.2007.01.023.PubMedGoogle Scholar
  219. 219.
    H. Pinto-Alphandary, O. Balland, and P. Couvreur. A new method to isolate poly(alkylcyanoacrylate) nanoparticle preparations. J. Drug. Target. 3:167–169 (1995). doi:10.3109/10611869509059216.PubMedGoogle Scholar
  220. 220.
    E. Chiellini, L. M. Orsini, and R. Solaro. Polymeric nanoparticles based on polylactide and related co-polymers. Macromol. Symp. 197:345–354 (2003). doi:10.1002/masy.200350730.Google Scholar
  221. 221.
    K. Bouchemal, G. Ponchel, S. Mazzaferro, V.-H. Campos-Requena, C. Gueutin, G.-F. Palmieri, and C. Vauthier. A new approach to determine loading efficiency of Leu-enkephalin in poly(isobutylcyanoacrylate) nanoparticles coated with thiolated chitosan. J. Drug. Del. Sci. Tech. 22(12):2152–2162 (2008).Google Scholar
  222. 222.
    G. Dalwadi, H. A. Benson, and Y. Chen. Comparison of diafiltration and tangential flow filtration for purification of nanoparticle suspensions. Pharm. Res. 22(12):2152–2162 (2005). doi:10.1007/s11095-005-7781-z.PubMedGoogle Scholar
  223. 223.
    P. Harmant, and P. Aimar. Materials, Interfaces and Electrochemical Phenomena coagulation of colloids retained by porous wall. AIChE J. 42:3523 (1996).Google Scholar
  224. 224.
    S. S. Madaeni, and A. G. Fane. Microfiltration of very dilute colloidal mixtures. J. Membr. Sci. 113:301–312 (1996). doi:10.1016/0376-7388(95)00129-8.Google Scholar
  225. 225.
    J. Rollot, P. Couvreur, L. Roblot-Treupel, and F. Puisieux. Physicochemical and morphological characterization of polyisobutylcyanoacrylate nanocapsules. J. Pharm. Sci. 75:361–364 (1986). doi:10.1002/jps.2600750408.PubMedGoogle Scholar
  226. 226.
    V. Masson, F. Maurin, H. Fessi, and J. P. Devissaguet. Influence of sterilization processes on poly(ε-caprolactone) nanospheres. Biomaterials. 18:327–335 (1997). doi:10.1016/S0142-9612(96)00144-5.PubMedGoogle Scholar
  227. 227.
    P. Sommerfeld, U. Schroeder, and B. A. Sabel. Sterilization of unloaded polybutylcyanoacrylate nanoparticles. Int. J. Pharm. 164:113–118 (1998). doi:10.1016/S0378-5173(97)00394-3.Google Scholar
  228. 228.
    G. W. Bos, A. Trullas-Jimeno, W. Jiskoot, D. J. A. Crommelin, and W. E. Hennink. Sterilization of poly(dimethylamino) ethyl methacrylate-based gene transfer complexes. Int. J. Pharm. 211:79–88 (2000). doi:10.1016/S0378-5173(00)00593-7.PubMedGoogle Scholar
  229. 229.
    C. Boess, and K. W. Bögl. Influence of radiation treatment on pharmaceuticals—a review: alkaloids, morphine derivatives and antibiotics. Drug. Dev. Ind. Pharm. 22(6):495–529 (1996). doi:10.3109/03639049609108354.Google Scholar
  230. 230.
    M. B. Sintzel, A. Merklia, C. Tabatabay, and R. Gurny. Influence of irradiation sterilization on polymers used as drug carriers : A review. Drug. Dev. Ind. Pharm. 23(9):857–878 (1997). doi:10.3109/03639049709148693.Google Scholar
  231. 231.
    K. A. Athanasiou, G. G. Niederauer, and C. M. Agrawal. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials. 17:93–102 (1996). doi:10.1016/0142-9612(96)85754-1.PubMedGoogle Scholar
  232. 232.
    O. Maksimenko, E. Pavlov, E. Toushov, A. Molin, Y. Stukalov, T. Prudskova, V. Feldman, J. Kreuter, and S. Gelperina. Radiation sterilisation of doxorubicin bound to poly(butyl cyanoacrylate) nanoparticles. Int. J. Pharm. 356(1–2):325–332 (2008). doi:10.1016/j.ijpharm.2008.01.010.PubMedGoogle Scholar
  233. 233.
    E. Memisoglu-Bilensoy, and A. A. Hincal. Sterile, injectable cyclodextrin nanoparticles: Effects of gamma irradiation and autoclaving. Int. J. Pharm. 311:203–208 (2006). doi:10.1016/j.ijpharm.2005.12.013.PubMedGoogle Scholar
  234. 234.
    B. Magenheim, and S. Benita. Nanoparticle characterization: a comprehensive physicochemical approach. STP Pharma. Sci. 1:221–241 (1991).Google Scholar
  235. 235.
    I. Brigger, L. Armand-Lefevre, P. Chaminade, M. Besnard, Y. Rigaldie, A. Largeteau, A. Andremont, L. Grislain, G. Demazeau, and P. Couvreur. The stenlying effect of high hydrostatic pressure on thermally and hydrolytically labile nanosized carriers. Pharm Res. 20(4):674–683 (2003). doi:10.1023/A:1023267304096.PubMedGoogle Scholar
  236. 236.
    F. Nemati, G. N. Cavé, and P. Couvreur. Lyophilization of substances with low water permeability by a modification of crystallized structures during Freezing. Proceedings of the 6th International Congress of Pharmaceutical Technology Assoc. Pharm. Galénique Ind., Châtenay Malabry, APGI, Paris-France. (3):487–493 (1992).Google Scholar
  237. 237.
    S. De Chasteigner, H. Fessi, G. Cavé, J. P. Devissaguet, and F. Puisieux. gastro-intestinal tolerance study of a freeze-dried oral dosage form of indomethacin-loaded nanocapsules. S.T.P. Pharma Sci. 5:242–246 (1995).Google Scholar
  238. 238.
    S. De Chasteigner, G. Cavé, H. Fessi, J. P. Devissaguet, and F. Puisieux. Freeze-drying of Itraconazole-loaded nanosphere suspensions : a feasibility study. Drug. Dev. Res. 38:116–124 (1996). doi:10.1002/(SICI)1098-2299(199606)38:2<116::AID-DDR6>3.0.CO;2-M.Google Scholar
  239. 239.
    M. Auvillain, G. Cavé, H. Fessi, and J. P. Devissaguet. Lyophilisation de vecteurs colloïdaux submicroniques. STP Pharma. Sci. 5:738–744 (1989).Google Scholar
  240. 240.
    W. Abdelwahed, G. Degobert, S. Stainmesse, and H. Fessi. Freeze-drying of nanoparticles: Formulation, process and storage considerations. Adv. Drug. Deliv. Rev. 58:1688–1713 (2006). doi:10.1016/j.addr.2006.09.017.PubMedGoogle Scholar
  241. 241.
    W. Abdelwahed, G. Degobert, and H. Fessi. Freeze-drying of nanocapsules: Impact of annealing on the drying process. Int. J. Pharm. 324:74–82 (2006). doi:10.1016/j.ijpharm.2006.06.047.PubMedGoogle Scholar
  242. 242.
    P. Tewa-Tagne, S. Briançon, and H. Fessi. Spray-dried microparticles containing polymeric nanocapsules: Formulation aspects, liquid phase interactions and particles characteristics. Int. J. Pharm. 325:63–74 (2006). doi:10.1016/j.ijpharm.2006.06.025.PubMedGoogle Scholar
  243. 243.
    A. M. Layre, P. Couvreur, J. Richard, D. Requier, N. E. Ghermani, and R. Gref. Freeze-drying of composite core-shell nanoparticles. Drug. Dev. Ind. Pharm. 32(7):839–846 (2006). doi:10.1080/03639040600685134.PubMedGoogle Scholar
  244. 244.
    F. De Jaeghere, E. Allémann, J. -C. Leroux, W. Stevels, J. Feijen, E. Doelker, and R. Gurny. Formulation and lyoprotection of poly (Lactic acid-co-ethylene oxide) nanoparticles: influence on physical stability and in vitro cell uptake. Pharm. Res. 16:859–866 (1999). doi:10.1023/A:1018826103261.PubMedGoogle Scholar
  245. 245.
    M. Sameti, G. Bohr, M. N. V. Ravi Kumar, C. Kneuer, U. Bakowsky, M. Nacken, H. Schmidt, and C. -M. Lehr. Stabilization by freeze-drying of cationically modified silica nanoparticles for gene delivery. Int. J. Pharm. 266:51–60 (2003). doi:10.1016/S0378-5173(03)00380-6.PubMedGoogle Scholar
  246. 246.
    W. Abdelwahed, G. Degobert, and H. Fessi. A pilot study of freeze drying of poly(epsilon-caprolactone) nanocapsules stabilized by poly(vinyl alcohol): Formulation and process optimization. Int J Pharm. 309:178–188 (2006). doi:10.1016/j.ijpharm.2005.10.003.PubMedGoogle Scholar
  247. 247.
    B. Seijo, E. Fattal, L. Roblot-Treupel, and P. Couvreur. Design of nanoparticles of less than 50 nm diameter: preparation, characterization and drug loading. Int. J. Pharm. 62:1–7 (1990). doi:10.1016/0378-5173(90)90024-X.Google Scholar
  248. 248.
    T. W. Patapoff, and D. E. Overcashier. The importance of freezing on lyophilization cycle development. Biopharm. 3:16–21 (2002).Google Scholar
  249. 249.
    W. Abdelwahed, G. Degobert, and H. Fessi. Investigation of nanocapsules stabilization by amorphous excipients during freeze-drying and storage. Eur. J. Pharm Biopharm. 63:87–94 (2006). doi:10.1016/j.ejpb.2006.01.015.PubMedGoogle Scholar
  250. 250.
    J. Broadhead, S. K. Edmond Rouan, and C. T. Rhodes. The spray drying of pharmaceuticals. Drug. Dev. Ind. Pharm. 18:1169–1206 (1992). doi:10.3109/03639049209046327.Google Scholar
  251. 251.
    M. Adler, M. Unger, and G. Lee. Surface composition of spray-dried particles of bovine serum albumin/trehalose/surfactant. Pharm. Res. 17:863–870 (2000). doi:10.1023/A:1007568511399.PubMedGoogle Scholar
  252. 252.
    C. R. Müller, V. L. Bassani, A. R. Pohlmann, C. B. Michalowski, P. R. Petrovick, and S. S. Guterres. Preparation and characterization of spray-dried nanocapsules. Drug. Dev. Ind. Pharm. 26:343–347 (2000). doi:10.1081/DDC-100100363.PubMedGoogle Scholar
  253. 253.
    K. Master. Spray Drying Handbook. Longman Scientific and Technical, New York, 1991.Google Scholar
  254. 254.
    S. Bozdag, K. Dillen, J. Vandervoort, and A. Ludwig. The effect of freeze drying with cryoprotectants and gamma-irradiation sterilization on the characteristics of ciprofloxacin HCl-loaded poly(D,L-lactideglycolide) nanoparticles. J. Pharm. Pharmacol. 57:699–707 (2005). doi:10.1211/0022357056145.PubMedGoogle Scholar
  255. 255.
    C. Vauthier, B. Cabane, and D. Labarre. How to concentrate nanoparticles and avoid aggregation ? Eur. J. Pharm. Biopharm. 69:466–475 (2008). doi:10.1016/j.ejpb.2008.01.025.PubMedGoogle Scholar
  256. 256.
    F. Cournarie, M. Chéron, M. Besnard, and C. Vauthier. Evidence for restrictive parameters in formulation of insulin-loaded nanocapsules. Eur. J. Pharm. Biopharm. 57(2):171–179 (2004). doi:10.1016/S0939-6411(03)00191-7.PubMedGoogle Scholar
  257. 257.
    D. V. Bazile, C. Ropert, P. Huve, T. Verracchia, M. Marlard, A. Frydman, M. Veillard, and G. Spenlehauer. Body distribution of fully biodegradable [14C]-poly(lactic acid) nanoparticles coated with albumin after parenteral administration to rats. Biomaterials. 13(15):1093–1102 (1992). doi:10.1016/0142-9612(92)90142-B.PubMedGoogle Scholar
  258. 258.
    M. T. Peracchia, E. Fattal, D. Desmaële, M. Besnard, J. P. Noël, J. M. Gomis, M. Appel, J. d’Angelo, and P. Couvreur. Stealth PEGylated polycyanoacrylate nanoparticles for intravenous administration and splenic targeting. J. Control. Release. 60(1):121–128 (1999). doi:10.1016/S0168-3659(99)00063-2.PubMedGoogle Scholar
  259. 259.
    H. Pinto-Alphandary, M. Aboubakar, D. Jaillard, P. Couvreur, and C. Vauthier. Visualization of insulin-loaded nanocapsules: in vitro and in vivo studies after oral administration to rats. Pharm. Res. 20(7):1071–1084 (2003). doi:10.1023/A:1024470508758.PubMedGoogle Scholar
  260. 260.
    B. Weiss, U. F. Schaefer, J. Zapp, A. Lamprecht, A. Stallmach, and C. M. Lehr. Nanoparticles made of fluorescence-labelled poly(L-lactide-co-glycolide): preparation, stability and biocompatibility. J. Nanosci. Nanotechnol. 6(9–10):3048–3056 (2006). doi:10.1166/jnn.2006.424.PubMedGoogle Scholar
  261. 261.
    M. A. Pereira, V. C. Mosqueira, J. M. Vilela, M. S. Andrade, G. A. Ramaldes, and V. N. Cardose. PLA-PEG nanocapsules radiolabelled with 99 m Technitium-HMPAO: release properties and physicochemical characterization by atomic force microscopy and photon correlation spectroscopy. Eur. J. Pharm. Sci. 33:42–51 (2008).PubMedGoogle Scholar
  262. 262.
    M. Simeonova, T. Ivanova, Z. Raikov, and H. Konstantinov. Tissue distribution of polybutylcyanoacrylate nanoparticles loaded with spin-labelled nitrosourea in Lewis lung carcinoma-bearing mice. Acta Physiol. Pharmacol. Bulg. 20(3–4):77–82 (1994).PubMedGoogle Scholar
  263. 263.
    M. Tobio, A. Sanchez, A. Vila, I. I. Soriano, C. Evora, J. L. Vila-Jato, and M. J. Alonso. The role of PEG on the stability in digestive fluids and in vivo fate of PEG-PLA nanoparticles following oral administration. Colloids Surf. B. Biointerfaces. 18(3–4):315–323 (2000). doi:10.1016/S0927-7765(99)00157-5.PubMedGoogle Scholar
  264. 264.
    P. Prabu, A. A Chaudhari, N. Dharmaraj, M. S. Khil, S. Y. Park, and H. Y. Kim. Preparation, characterization, in-vitro drug release and cellular uptake of poly(caprolactone) grafted dextran copolymeric nanoparticles loaded with anticancer drug. J. Biomed. Mater. Res: A. (2008). [doi:10.1002/jbm.a.32163]
  265. 265.
    G. Sun, A. Hagooly, J. Xu, A. M. Nyström, Z. Li, R. Rossin, D. A. Moore, K. L. Wooley, and M. L. Welch. Facile, efficient approach to accomplish tunable chemistries and variable biodistributions for shell cross-linked nanoparticles. Biomacromolecules. 9(7):1997–2006 (2008). doi:10.1021/bm800246x.PubMedGoogle Scholar
  266. 266.
    S. Ponsart, J. Coudane, J. L. Morgat, and M. Vert. Synthesis of [3H]-labeled poly(ε-caprolactone). J. Labelled Compd Rad. 43:271–281 (2000).Google Scholar
  267. 267.
    S. Ponsart, J. Coudane, J. L. Morgat, and M. Vert. Synthesis of [3H] and fluorescence-labeled poly(lactide). J. Labelled Compd Rad. 44(10):677–687 (2001).Google Scholar
  268. 268.
    S. Ponsart, J. Coudane, B. Saulnier, J. L. Morgat, and M. Vert. Biodegradation of [(3)H]poly(ε-caprolactone) in the presence of active sludge extracts. Biomacromolecules. 2(2):373–377 (2001). doi:10.1021/bm015549k.PubMedGoogle Scholar
  269. 269.
    I. Bertholon, H. Hommel, D. Labarre, and C. Vauthier. Properties of Polysaccharides Grafted on Nanoparticles Investigated by EPR. Langmuir. 22:5485–5490 (2006). doi:10.1021/la060570y.PubMedGoogle Scholar
  270. 270.
    C. Chauvierre, C. Vauthier, D. Labarre, and H. Hommel. Evaluation of the surface properties of dextran coated poly(isobutylcyanocrylate) nanoparticles by Spin-labelling coupled with electron resonance spectroscopy. Colloid Polym. Sci. 282:1016–1025 (2004). doi:10.1007/s00396-003-1027-6.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.CNRS UMR 8612Université Paris Sud-11Chatenay-MalabryFrance

Personalised recommendations