Skip to main content
Log in

Effect of Ions on Agitation- and Temperature-Induced Aggregation Reactions of Antibodies

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The impact of ions on protein aggregation remains poorly understood. We explored the role of ionic strength and ion identity on the temperature- and agitation-induced aggregation of antibodies.

Methods

Stability studies were used to determine the influence of monovalent Hofmeister anions and cations on aggregation propensity of three IgG2 mAbs. The CH2 domain melting temperature (T m1) and reduced valence (z*) of the mAbs were measured.

Results

Agitation led to increased solution turbidity, consistent with the formation of insoluble aggregates, while soluble aggregates were formed during high temperature storage. The degree of aggregation increased with anion size (F < Cl < Br < I < SCN ~ ClO4 ) and correlated with a decrease in T m1 and z*. The aggregation propensity induced by the anions increased with the chaotropic nature of anion. The cation identity (Li+, Na+, K+, Rb+, or Cs+) had no effect on T m1, z* or aggregation upon agitation.

Conclusions

The results indicate that anion binding mediates aggregation by lowering mAb conformational stability and reduced valence. Our observations support an agitation-induced particulation model in which anions enhance the partitioning and unfolding of mAbs at the air/water interface. Aggregation predominantly occurs at this interface; refreshing of the surface during agitation releases the insoluble aggregates into bulk solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y. B. Zhang, J. Howitt, S. McCorkle, P. Lawrence, K. Springer, and P. Freimuth. Protein aggregation during overexpression limited by peptide extensions with large net negative charge. Protein Expr. Purif. 36:207–216 (2004). doi:10.1016/j.pep.2004.04.020.

    Article  CAS  PubMed  Google Scholar 

  2. E. R. LaVallie, E. A. DiBlasio, S. Kovacic, K. L. Grant, P. F. Schendel, and J. M. McCoy. A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Bio/technology (Nature Publishing Company). 11:187–193 (1993).

    Article  CAS  Google Scholar 

  3. E. D. Clark. Protein refolding for industrial processes. Curr. Opin. Biotechnol. 12:202–207 (2001). doi:10.1016/S0958-1669(00)00200-7.

    Article  CAS  PubMed  Google Scholar 

  4. W. Wang, S. Singh, D. L. Zeng, K. King, and S. Nema. Antibody structure, instability, and formulation. J. Pharm. Sci. 96:1–26 (2007). doi:10.1002/jps.20727.

    Article  CAS  PubMed  Google Scholar 

  5. J. R. Alford, B. S. Kendrick, J. F. Carpenter, and T. W. Randolph. High concentration formulations of recombinant human interleukin-1 receptor antagonist: II. Aggregation kinetics. J. Pharm. Sci. 97:3005–3021 (2008). doi:10.1002/jps.21205.

    Article  CAS  PubMed  Google Scholar 

  6. S. Kiese, A. Papppenberger, W. Friess, and H. C. Mahler. Shaken, not stirred: mechanical stress testing of an IgG1 antibody. J. Pharm. Sci. 97:4347–4366 (2008). doi:10.1002/jps.21328.

    Article  CAS  PubMed  Google Scholar 

  7. A. S. Rosenberg. Effects of protein aggregates: an immunologic perspective. AAPS J. 8:E501–E507 (2006). doi:10.1208/aapsj080359.

    Article  PubMed  Google Scholar 

  8. H. A. Lehr, J. Brunner, R. Rangoonwala, and C. J. Kirkpatrick. Particulate matter contamination of intravenous antibiotics aggravates loss of functional capillary density in postischemic striated muscle. Am. J. Respir. Crit. Care Med. 165:514–520 (2002).

    PubMed  Google Scholar 

  9. R. L. Baldwin. How Hofmeister ion interactions affect protein stability. Biophys J. 71:2056–2063 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. C. Tanford. Protein denaturation. Adv. Protein Chem. 23:121–282 (1968). doi:10.1016/S0065-3233(08)60401-5.

    Article  CAS  PubMed  Google Scholar 

  11. P. H. von Hippel, and K.-Y. Wong. Neutral salts: the generality of their effects on teh stability of macromolecular conformations. Science. 145:577–580 (1964). doi:10.1126/science.145.3632.577.

    Article  Google Scholar 

  12. A. C. Dumetz, M. Snellinger-O’brien, A. E. W. Kaler, and A. M. Lenhoff. Patterns of protein protein interactions in salt solutions and implications for protein crystallization. Protein Sci. 16:1867–1877 (2007). doi:10.1110/ps.072957907.

    Article  CAS  PubMed  Google Scholar 

  13. S. Shima, C. Tziatzios, D. Schubert, H. Fukada, K. Takahashi, U. Ermler, and R. K. Thauer. Lyotropic-salt-induced changes in monomer/dimer/tetramer association equilibrium of formyltransferase from the hyperthermophilic Methanopyrus kandleri in relation to the activity and thermostability of the enzyme. Eur. J. Biochem. 258:85–92 (1998). doi:10.1046/j.1432-1327.1998.2580085.x.

    Article  CAS  PubMed  Google Scholar 

  14. Y. Zhangand, and P. S. Cremer. Interactions between macromolecules and ions: The Hofmeister series. Curr. Opin. Chem. Biol. 10:658–663 (2006). doi:10.1016/j.cbpa.2006.09.020.

    Article  CAS  Google Scholar 

  15. W. Melander, and C. Horvath. Salt effect on hydrophobic interactions in precipitation and chromatography of proteins: an interpretation of the lyotropic series. Arch. Biochem. Biophys. 183:200–215 (1977). doi:10.1016/0003-9861(77)90434-9.

    Article  CAS  PubMed  Google Scholar 

  16. K. D. Collins. Sticky ions in biological systems. Proc. Natl. Acad. Sci. U. S. A. 92:5553–5557 (1995). doi:10.1073/pnas.92.12.5553.

    Article  CAS  PubMed  Google Scholar 

  17. K. D. Collins. Charge density-dependent strength of hydration and biological structure. Biophys. J. 72:65–76 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. K. D. Collins. Ions from the Hofmeister series and osmolytes: effects on proteins in solution and in the crystallization process. Methods. 34:300–311 (2004). doi:10.1016/j.ymeth.2004.03.021.

    Article  CAS  PubMed  Google Scholar 

  19. M. W. Washabaugh, and K. D. Collins. The systematic characterization by aqueous column chromatography of solutes which affect protein stability. J. Biol. Chem. 261:12477–12485 (1986).

    CAS  PubMed  Google Scholar 

  20. Y. R. Gokarn, A. Kosky, E. Kras, A. McAuley, and R. L. Remmele Jr. Excipients for protein drugs. In A. Katdare, and M. V. Chaubal (eds.), Excipient Development for Pharmaceutical, Biotechnology, and Drug Delivery Systems, Informa Healthcare USA, Inc., New York, 2006, pp. 291–340.

    Google Scholar 

  21. J. Liu, M. D. Nguyen, J. D. Andya, and S. J. Shire. Reversible self-association increases the viscosity of a concentrated monoclonal antibody in aqueous solution. J. Pharm. Sci. 94:1928–1940 (2005). doi:10.1002/jps.20347.

    Article  CAS  PubMed  Google Scholar 

  22. S. Kanai, J. Liu, T. W. Patapoff, and S. J. Shire. Reversible self-association of a concentrated monoclonal antibody solution mediated by Fab-Fab interaction that impacts solution viscosity. J. Pharm. Sci. 97:4219–4227 (2008). doi:10.1002/jps.21322.

    Article  CAS  PubMed  Google Scholar 

  23. Y. R. Gokarn, E. Kras, C. Nodgaard, V. Dharmavaram, R. M. Fesinmeyer, H. Hultgen, S. Brych, R. L. Remmele Jr., D. N. Brems, and S. Hershenson. Self-buffering antibody formulations. J. Pharm. Sci. 97:3051–3066 (2008). doi:10.1002/jps.21232.

    Article  CAS  PubMed  Google Scholar 

  24. E. Gasteiger, C. Hoogland, A. Gattiker, S. Duvaud, M. R. Wilkins, R. D. Appel, and A. Bairoch. Protein identification and analysis tools on teh ExPASy server. In J. M. Walker (ed.), The Proteomics Protocols Handbook. Humana Press, 2005.

  25. J. A. Durant, C. Chen, T. M. Laue, T. P. Moody, and S. A. Allison. Use of T4 lysozyme charge mutants to examine electrophoretic models. Biophys. Chem. 101–102:593–609 (2002). doi:10.1016/S0301-4622(02)00168-0.

    Article  PubMed  Google Scholar 

  26. T. Laue, B. Shah, T. Ridgeway, and S. Pelletier. Analytical ultracentrifugation in biochemistry and polymer science. In S. Harding, A. Rowe, and J. Horton (eds.), Thomas Graham House, Cambridge, 1992, pp. 90–125.

  27. P. Schuck. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys. J. 78:1606–1619 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. R. L. Remmele Jr., S. D. Bhat, D. H. Phan, and W. R. Gombotz. Minimization of recombinant human Flt3 ligand aggregation at the Tm plateau: a matter of thermal reversibility. Biochemistry. 38:5241–5247 (1999). doi:10.1021/bi982881g.

    Article  CAS  PubMed  Google Scholar 

  29. V. M. Tischenko, V. M. Abramov, and V. P. Zav’yalov. Investigation of the cooperative structure of Fc fragments from myeloma immunoglobulin G. Biochemistry. 37:5576–5581 (1998). doi:10.1021/bi972647a.

    Article  CAS  PubMed  Google Scholar 

  30. J. Wen, Y. Jiang, and L. O. Narhi. Applications of DSC for Antiobodies and Fc-Conjugated Proteins. Am. Pharm. Rev. 10:10–15 (2007).

    CAS  Google Scholar 

  31. J. Wen, Y. Jiang, and L. O. Narhi. Effect of carbohydrate on thermal stability of antibodies. Am. Pharm. Rev. in press (2008).

  32. J. P. Schmittschmitt, and J. M. Scholtz. The role of protein stability, solubility, and net charge in amyloid fibril formation. Protein Sci. 12:2374–2378 (2003). doi:10.1110/ps.03152903.

    Article  CAS  PubMed  Google Scholar 

  33. M. Calamai, N. Taddei, M. Stefani, G. Ramponi, and F. Chiti. Relative influence of hydrophobicity and net charge in the aggregation of two homologous proteins. Biochemistry. 42:15078–15083 (2003). doi:10.1021/bi030135s.

    Article  CAS  PubMed  Google Scholar 

  34. F. Chiti, M. Calamai, N. Taddei, M. Stefani, G. Ramponi, and C. M. Dobson. Studies of the aggregation of mutant proteins in vitro provide insights into the genetics of amyloid diseases. Proc. Natl. Acad. Sci. U. S. A. 99(Suppl 4):16419–16426 (2002). doi:10.1073/pnas.212527999.

    Article  CAS  PubMed  Google Scholar 

  35. Z. Ahmad, S. Yadav, F. Ahmad, and N. Z. Khan. Effects of salts of alkali earth metals and calcium chloride on the stability of cytochrome c and myoglobin. Biochim. Biophys. Acta. 1294:63–71 (1996).

    PubMed  Google Scholar 

  36. G. I. Makhatadze, M. M. Lopez, J. M. Richardson 3rd, and S. T. Thomas. Anion binding to the ubiquitin molecule. Protein Sci. 7:689–697 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. J. Kyte, and R. F. Doolittle. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157:105–132 (1982). doi:10.1016/0022-2836(82)90515-0.

    Article  CAS  PubMed  Google Scholar 

  38. P. Jungwirth, and D. J. Tobias. Specific ion effects at the air/water interface. Chem. Rev. 106:1259–1281 (2006). doi:10.1021/cr0403741.

    Article  CAS  PubMed  Google Scholar 

  39. B. A. Staggemeier, E. Bramanti, C. Allegrini, K. J. Skogerboe, and R. E. Synovec. High-throughput screening of protein surface activity via flow injection analysis-pH gradient-dynamic surface tension detection. Anal. Chem. 77:250–258 (2005). doi:10.1021/ac049088f.

    Article  CAS  PubMed  Google Scholar 

  40. S. Ghosal, J. C. Hemminger, H. Bluhm, B. S. Mun, E. L. Hebenstreit, G. Ketteler, D. F. Ogletree, F. G. Requejo, and M. Salmeron. Electron spectroscopy of aqueous solution interfaces reveals surface enhancement of halides. Science. 307:563–566 (2005). doi:10.1126/science.1106525.

    Article  CAS  PubMed  Google Scholar 

  41. N. B. Bam, J. L. Cleland, J. Yang, M. C. Manning, J. F. Carpenter, R. F. Kelley, and T. W. Randolph. Tween protects recombinant human growth hormone against agitation-induced damage via hydrophobic interactions. J. Pharm. Sci. 87:1554–1559 (1998). doi:10.1021/js980175v.

    Article  CAS  PubMed  Google Scholar 

  42. T. W. Randolph, and L. S. Jones. Surfactant-protein interactions. Pharm. Biotechnol. 13:159–175 (2002).

    CAS  PubMed  Google Scholar 

  43. B. A. Kerwin. Polysorbates 20 and 80 used in the formulation of protein biotherapeutics: structure and degradation pathways. J. Pharm. Sci. 97:2924–2935 (2008). doi:10.1002/jps.21190.

    Article  CAS  PubMed  Google Scholar 

  44. R. H. Steele, S. Limaye, B. Cleland, J. Chow, and M. G. Suranyi. Hypersensitivity reactions to the polysorbate contained in recombinant erythropoietin and darbepoietin. Nephrology (Carlton, Vic.). 10:317–320 (2005).

    Article  Google Scholar 

  45. K. S. Price, and R. G. Hamilton. Anaphylactoid reactions in two patients after omalizumab administration after successful long-term therapy. Allergy Asthma Proc. 28:313–319 (2007). doi:10.2500/aap.2007.28.3003.

    Article  CAS  PubMed  Google Scholar 

  46. M. J. Treuheit, A. A. Kosky, and D. N. Brems. Inverse relationship of protein concentration and aggregation. Pharm. Res. 19:511–516 (2002). doi:10.1023/A:1015108115452.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Thomas M. Laue and Ms. Susan Chase of the University of New Hampshire for their help with the reduced valence measurement method.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yatin R. Gokarn.

Additional information

R. Matthew Fesinmeyer and Sabine Hogan have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fesinmeyer, R.M., Hogan, S., Saluja, A. et al. Effect of Ions on Agitation- and Temperature-Induced Aggregation Reactions of Antibodies. Pharm Res 26, 903–913 (2009). https://doi.org/10.1007/s11095-008-9792-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9792-z

KEY WORDS

Navigation