Skip to main content

Advertisement

Log in

Naringenin-Loaded Nanoparticles Improve the Physicochemical Properties and the Hepatoprotective Effects of Naringenin in Orally-Administered Rats with CCl4-Induced Acute Liver Failure

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

A novel naringenin-loaded nanoparticles system (NARN) was developed to resolve the restricted bioavailability of naringenin (NAR) and to enhance its hepatoprotective effects in vivo on oral administration.

Materials and methods

Physicochemical characterizations of NARN included assessment of particle size and morphology, powder X-ray diffraction, fourier transform infrared spectroscopy, and dissolution study. In addition, to evaluate its bioactivities and its oral treatment potential against liver injuries, we compared the hepatoprotective, antioxidant, and antiapoptotic effects of NARN and NAR on carbon tetrachloride (CCl4)-induced hepatotoxicity in rats.

Results

NARN had a significantly higher release rate than NAR and improved its solubility. NARN also exhibited more liver-protective effects compared to NAR with considerable reduction in liver function index and lipid peroxidation, in conjunction to a substantial increase in the levels of the antioxidant enzymes (P < 0.05). Moreover, NARN was able to significantly inhibit the activation of caspase-3, -8, and -9 signaling, whereas NAR only markedly inhibited caspase-3 and -9 (P < 0.05).

Conclusion

NARN effectively improved the release of NAR which resulted in more hepatoprotective effects mediated by its antioxidant and antiapoptotic properties. These observations also suggest that nanoformulation can improve the free drug’s bioactivity on oral administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K. Tanikawa, and T. Torimura. Studies on oxidative stress in liver diseases: important future trends in liver research. Med. Mol. Morphol. 39:22 (2006). doi:10.1007/s00795-006-0313-z.

    Article  PubMed  CAS  Google Scholar 

  2. L. Cesaratto, C. Vascotto, S. Calligaris, and G. Tell. The importance of redox state in liver damage. Ann. Hepatol. 3:86 (2004).

    PubMed  Google Scholar 

  3. D. J. Tuma. Role of malondialdehyde–acetaldehyde adducts in liver injury. Free. Radic. Biol. Med. 32:303 (2002). doi:10.1016/S0891-5849(01)00742-0.

    Article  PubMed  CAS  Google Scholar 

  4. R. Q. Gill, and R. K. Sterling. Acute liver failure. J. Clin. Gastroenterol. 33:191 (2001). doi:10.1097/00004836-200109000-00005.

    Article  PubMed  CAS  Google Scholar 

  5. S. R. Naik, and V. S. Panda. Antioxidant and hepatoprotective effects of Ginkgo biloba phytosomes in carbon tetrachloride-induced liver injury in rodents. Liver. Int. 27:393 (2007). doi:10.1111/j.1478-3231.2007.01463.x.

    Article  PubMed  CAS  Google Scholar 

  6. C. P. Lee, P. H. Shih, C. L. Hsu, and G. C. Yen. Hepatoprotection of tea seed oil (Camellia oleifera Abel.) against CCl4-induced oxidative damage in rats. Food. Chem. Toxicol. 45:888 (2007). doi:10.1016/j.fct.2006.11.007.

    Article  PubMed  CAS  Google Scholar 

  7. Z. M. Wu, T. Wen, Y. F. Tan, Y. Liu, F. Ren, and H. Wu. Effects of salvianolic acid A on oxidative stress and liver injury induced by carbon tetrachloride in rats. Basic. Clin. Pharmacol. Toxicol. 100:115 (2007).

    PubMed  CAS  Google Scholar 

  8. L. W. Weber, M. Boll, and A. Stampfl. Hepatotoxicity and mechanism of action of haloalkanes: carbon tetrachloride as a toxicological model. Crit. Rev. Toxicol. 33:105 (2003). doi:10.1080/713611034.

    Article  PubMed  CAS  Google Scholar 

  9. G. Poli. Liver damage due to free radicals. Br. Med. Bull. 49:604 (1993).

    PubMed  CAS  Google Scholar 

  10. S. Basu. Carbon tetrachloride-induced lipid peroxidation: eicosanoid formation and their regulation by antioxidant nutrients. Toxicology. 189:113 (2003). doi:10.1016/S0300-483X(03)00157-4.

    Article  PubMed  CAS  Google Scholar 

  11. P. Y. Chiu, M. H. Tang, D. H. Mak, M. K. Poon, and K. M. Ko. Hepatoprotective mechanism of schisandrin B: role of mitochondrial glutathione antioxidant status and heat shock proteins. Free. Radic. Biol. Med. 35:368 (2003). doi:10.1016/S0891-5849(03)00274-0.

    Article  PubMed  CAS  Google Scholar 

  12. U. Singh, S. Devaraj, and I. Jialal. Vitamin E, oxidative stress, and inflammation. Annu. Rev. Nutr. 25:151 (2005). doi:10.1146/annurev.nutr.24.012003.132446.

    Article  PubMed  CAS  Google Scholar 

  13. P. G. Pietta. Flavonoids as antioxidants. J. Nat. Prod. 63:1035 (2000). doi:10.1021/np9904509.

    Article  PubMed  CAS  Google Scholar 

  14. T. Ozben. Oxidative stress and apoptosis: impact on cancer therapy. J. Pharm. Sci. 96:2181 (2007). doi:10.1002/jps.20874.

    Article  PubMed  CAS  Google Scholar 

  15. H. Schulze-Bergkamen, M. Schuchmann, B. Fleischer, and P. R. Galle. The role of apoptosis versus oncotic necrosis in liver injury: facts or faith? J. Hepatol. 44:984 (2006). doi:10.1016/j.jhep.2006.02.004.

    Article  PubMed  CAS  Google Scholar 

  16. C. Garcia-Ruiz, and J. C. Fernández-Checa. Redox regulation of hepatocyte apoptosis. J. Gastroenterol. Hepatol. 22(Suppl 1):S38 (2007). doi:10.1111/j.1440-1746.2006.04644.x.

    Article  PubMed  CAS  Google Scholar 

  17. A. Dembinski, Z. Warzecha, S.J. Konturek, P. Ceranowicz, M. Dembinski, W. W. Pawlik, B. Kusnierz-Cabala, and J.W. Naskalski. Extract of grapefruit-seed reduces acute pancreatitis induced by ischemia/reperfusion in rats: possible implication of tissue antioxidants. J. Physiol. Pharmacol. 55:811 (2004).

    PubMed  CAS  Google Scholar 

  18. G. Le Gall, M. S. DuPont, F. A. Mellon, A. L. Davis, G. J. Collins, M. E. Verhoeyen, and I. J. Colquhoun. Characterization and content of flavonoid glycosides in genetically modified tomato (Lycopersicon esculentum) fruits. J. Agric. Food. Chem. 51:2438 (2003). doi:10.1021/jf025995e.

    Article  PubMed  Google Scholar 

  19. H. Wang, M. G. Nair, G. M. Strasburg, A. M. Booren, and J. I. Gray. Antioxidant polyphenols from tart cherries (Prunus cerasus). J. Agric. Food. Chem. 47:840 (1999). doi:10.1021/jf980936f.

    Article  PubMed  CAS  Google Scholar 

  20. I. Erlund, E. Meririnne, G. Alfthan, and A. Aro. Plasma kinetics and urinary excretion of the flavanones naringenin and hesperetin in humans after ingestion of orange juice and grapefruit juice. J. Nutr. 131:235 (2001).

    PubMed  CAS  Google Scholar 

  21. T. Stark, S. Bareuther, and T. Hofmann. Sensory-guided decomposition of roasted cocoa nibs (Theobroma cacao) and structure determination of taste-active polyphenols. J. Agric. Food. Chem. 53:5407 (2005). doi:10.1021/jf050457y.

    Article  PubMed  CAS  Google Scholar 

  22. S. C. Shen, C. H. Ko, S. W. Tseng, S. H. Tsai, and Y. C. Chen. Structurally related antitumor effects of flavanones in vitro and in vivo: involvement of caspase 3 activation, p21 gene expression, and reactive oxygen species production. Toxicol. Appl. Pharmacol. 197:84 (2004). doi:10.1016/j.taap.2004.02.002.

    Article  PubMed  CAS  Google Scholar 

  23. H. J. Heo, D. O. Kim, S. C. Shin, M. J. Kim, B. G. Kim, and D. H. Shin. Effect of antioxidant flavanone, naringenin, from Citrus junoson neuroprotection. J. Agric. Food. Chem. 52:1520 (2004). doi:10.1021/jf035079g.

    Article  PubMed  CAS  Google Scholar 

  24. S. Kanno, A. Tomizawa, T. Hiura, Y. Osanai, A. Shouji, M. Ujibe, T. Ohtake, K. Kimura, and M. Ishikawa. Inhibitory effects of naringenin on tumor growth in human cancer cell lines and sarcoma S-180-implanted mice. Biol. Pharm. Bull. 28:527 (2005). doi:10.1248/bpb.28.527.

    Article  PubMed  CAS  Google Scholar 

  25. S. Hirai, Y. I. Kim, T. Goto, M. S. Kang, M. Yoshimura, A. Obata, R. Yu, and T. Kawada. Inhibitory effect of naringenin chalcone on inflammatory changes in the interaction between adipocytes and macrophages. Life. Sci. 81:1272 (2007). doi:10.1016/j.lfs.2007.09.001.

    Article  PubMed  CAS  Google Scholar 

  26. M. H. Lee, S. Yoon, and J. O. Moon. The flavonoid naringenin inhibits dimethylnitrosamine-induced liver damage in rats. Biol. Pharm. Bull. 27:72 (2004). doi:10.1248/bpb.27.72.

    Article  PubMed  CAS  Google Scholar 

  27. S. L. Hsiu, T. Y. Huang, Y. C. Hou, D. H. Chin, and P. D. Chao. Comparison of metabolic pharmacokinetics of naringin and naringenin in rabbits. Life. Sci. 70:1481 (2002). doi:10.1016/S0024-3205(01)01491-6.

    Article  PubMed  CAS  Google Scholar 

  28. D. V. Ratnam, D. D. Ankola, V. Bhardwaj, D. K. Sahana, and M. N. Kumar. Role of antioxidants in prophylaxis and therapy: A pharmaceutical perspective. J. Control. Release. 113:189 (2006). doi:10.1016/j.jconrel.2006.04.015.

    Article  PubMed  CAS  Google Scholar 

  29. J. Dai, T. Nagai, X. Wang, T. Zhang, M. Meng, and Q. Zhang. pH-sensitive nanoparticles for improving the oral bioavailability of cyclosporine A. Int. J. Pharm. 280:229 (2004). doi:10.1016/j.ijpharm.2004.05.006.

    Article  PubMed  CAS  Google Scholar 

  30. J. Y. Jung, S. D. Yoo, S. H. Lee, K. H. Kim, D. S. Yoon, and K. H. Lee. Enhanced solubility and dissolution rate of itraconazole by a solid dispersion technique. Int. J. Pharm. 187:209 (1999). doi:10.1016/S0378-5173(99)00191-X.

    Article  PubMed  CAS  Google Scholar 

  31. S. L. Wang, S. Y. Lin, T. F. Chen, and W. T. Cheng. Eudragit E accelerated the diketopiperazine formation of enalapril maleate determined by thermal FTIR microspectroscopic technique. Pharm. Res. 21:2127 (2004). doi:10.1023/B:PHAM.0000048206.62093.4e.

    Article  PubMed  CAS  Google Scholar 

  32. T. H. Wu, F. L. Yen, L. T. Lin, T. R. Tsai, C. C. Lin, and T. M. Cham. Preparation, physicochemical characterization, and antioxidant effects of quercetin nanoparticles. Int. J. Pharm. 346:160 (2008). doi:10.1016/j.ijpharm.2007.06.036.

    Article  PubMed  CAS  Google Scholar 

  33. U. Bilati, E. Allémann, and E. Doelker. Nanoprecipitation versus emulsion-based techniques for the encapsulation of proteins into biodegradable nanoparticles and process-related stability issues. AAPS. PharmSciTech. 6:E594 (2005). doi:10.1208/pt060474.

    Article  PubMed  Google Scholar 

  34. Z. Zili, S. Sfar, and H. Fessi. Preparation and characterization of poly-epsilon-caprolactone nanoparticles containing griseofulvin. Int. J. Pharm. 294:261 (2005). doi:10.1016/j.ijpharm.2005.01.020.

    Article  PubMed  CAS  Google Scholar 

  35. P. Muriel, and M. Mourelle. Characterization of membrane fraction lipid composition and function of cirrhotic rat liver. Role of S-adenosyl-L-methionine. J. Hepatol. 14:16 (1992). doi:10.1016/0168-8278(92)90125-9.

    Article  PubMed  CAS  Google Scholar 

  36. H. Ohkawa, N. Ohishi, and K. Yagi. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95:351 (1979). doi:10.1016/0003-2697(79)90738-3.

    Article  PubMed  CAS  Google Scholar 

  37. H. Aebi. Catalase in vitro. Methods Enzymol. 105:121 (1984). doi:10.1016/S0076-6879(84)05016-3.

    Article  PubMed  CAS  Google Scholar 

  38. O. H. Lowry, N. J Rosebrough, A. L. Farr, and R. J. Randall. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265 (1951).

    PubMed  CAS  Google Scholar 

  39. J. Xing, D. Zhang, and T. Tan. Studies on the oridonin-loaded poly(D,L-lactic acid) nanoparticles in vitro and in vivo. Int. J. Biol. Macromol. 40:153 (2007). doi:10.1016/j.ijbiomac.2006.07.001.

    Article  PubMed  CAS  Google Scholar 

  40. T. Y. Lee, H. H. Chang, M. Y. Wu, and H. C. Lin. Yin-Chen-Hao-Tang ameliorates obstruction-induced hepatic apoptosis in rats. J. Pharm. Pharmacol. 59:583 (2007). doi:10.1211/jpp.59.4.0014.

    Article  PubMed  CAS  Google Scholar 

  41. T. Y. Lee, H. H. Chang, G. J. Wang, J. H. Chiu, Y. Y. Yang, and H. C. Lin. Water-soluble extract of Salvia miltiorrhiza ameliorates carbon tetrachloride-mediated hepatic apoptosis in rats. J. Pharm. Pharmacol. 58:659 (2006). doi:10.1211/jpp.58.5.0011.

    Article  PubMed  CAS  Google Scholar 

  42. Y. Chen, J. Liu, X. Yang, X. Zhao, and H. Xu. Oleanolic acid nanosuspensions: preparation, in-vitro characterization and enhanced hepatoprotective effect. J. Pharm. Pharmacol. 57:259 (2005). doi:10.1211/0022357055407.

    Article  PubMed  CAS  Google Scholar 

  43. S. K. Sahoo, J. Panyam, S. Prabha, and V. Labhasetwar. Residual polyvinyl alcohol associated with poly (D,L-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. J. Control. Release. 82:105 (2002). doi:10.1016/S0168-3659(02)00127-X.

    Article  PubMed  CAS  Google Scholar 

  44. Y. N. Konan-Kouakou, R. Boch, R. Gurny, and E. Allémann. In vitro and in vivo activities of verteporfin-loaded nanoparticles. J. Control. Release. 103:83 (2005). doi:10.1016/j.jconrel.2004.11.023.

    Article  PubMed  CAS  Google Scholar 

  45. P. P Shah, R. C. Mashru, Y. M. Rane, and A. Thakkar. Design and optimization of mefloquine hydrochloride microparticles for bitter taste masking. AAPS. PharmSciTech. 9:377 (2008). doi:10.1208/s12249-008-9052-x.

    Article  Google Scholar 

  46. D. R. Koop. Oxidative and reductive metabolism by cytochrome P450 2E1. FASEB. J. 6:724 (1992).

    PubMed  CAS  Google Scholar 

  47. C. Y. Wang, F. L. Ma, J. T. Liu, J. W. Tian, and F. H. Fu. Protective effect of salvianic acid A on acute liver injury induced by carbon tetrachloride in rats. Biol. Pharm. Bull. 30:44 (2007). doi:10.1248/bpb.30.44.

    Article  PubMed  CAS  Google Scholar 

  48. M. A. Mansour. Protective effects of thymoquinone and desferrioxamine against hepatotoxicity of carbon tetrachloride in mice. Life. Sci. 66:2583 (2000). doi:10.1016/S0024-3205(00)00592-0.

    Article  PubMed  CAS  Google Scholar 

  49. F. Sun, E. Hamagawa, C. Tsutsui, Y. Ono, Y. Ogiri, and S. Kojo. Evaluation of oxidative stress during apoptosis and necrosis caused by carbon tetrachloride in rat liver. Biochim. Biophys. Acta. 1535:186 (2001).

    PubMed  CAS  Google Scholar 

  50. H. Ikeda, Y. Kume, K. Tejima, T. Tomiya, T. Nishikawa, N. Watanabe, N. Ohtomo, M. Arai, C. Arai, M. Omata, K. Fujiwara, and Y. Yatomi. Rho-kinase inhibitor prevents hepatocyte damage in acute liver injury induced by carbon tetrachloride in rats. Am. J. Physiol. Gastrointest. Liver. Physiol. 293:G911 (2007). doi:10.1152/ajpgi.00210.2007.

    Article  PubMed  CAS  Google Scholar 

  51. R. Rodrigo, C. Guichard, and R. Charles. Clinical pharmacology and therapeutic use of antioxidant vitamins. Fundam. Clin. Pharmacol. 21:111 (2007). doi:10.1111/j.1472-8206.2006.00466.x.

    Article  PubMed  CAS  Google Scholar 

  52. Y. Hu, J. Xie, Y. W. Tong, and C. H. Wang. Effect of PEG conformation and particle size on the cellular uptake efficiency of nanoparticles with the HepG2 cells. J. Control. Release. 118:7 (2007). doi:10.1016/j.jconrel.2006.11.028.

    Article  PubMed  CAS  Google Scholar 

  53. H. F. Liang, T. F. Yang, C. T. Huang, M. C. Chen, and H. W. Sung. Preparation of nanoparticles composed of poly(gamma-glutamic acid)–poly(lactide) block copolymers and evaluation of their uptake by HepG2 cells. J. Control. Release. 105:213 (2005). doi:10.1016/j.jconrel.2005.03.021.

    Article  PubMed  CAS  Google Scholar 

  54. A. Salazar-Montes, V. Delgado-Rizo, and J. Armenda’riz-Borunda. Differential gene expression of pro-inflammatory and anti-inflammatory cytokines in acute and chronic liver injury. Hepatol. Res. 16:181 (2000). doi:10.1016/S1386-6346(99)00048-0.

    Article  Google Scholar 

  55. A. Lamprecht, N. Ubrich, H. Yamamoto, U. Schäfer, H. Takeuchi, P. Maincent, Y. Kawashima, and C.M. Lehr. Biodegradable nanoparticles for targeted drug delivery in treatment of inflammatory bowel disease. J. Pharmacol. Exp. Ther. 299:775 (2001).

    PubMed  CAS  Google Scholar 

  56. M. Hashida, S. Takemura, M. Nishikawa, and Y. Takakura. Targeted delivery of plasmid DNA complexed with galactosylated poly(L-lysine). J. Control. Release. 53:301 (1998). doi:10.1016/S0168-3659(97)00263-0.

    Article  PubMed  CAS  Google Scholar 

  57. J. Shi, K. Aisaki, Y. Ikawa, and K. Wake. Evidence of hepatocyte apoptosis in rat liver after the administration of carbon tetrachloride. Am. J. Pathol. 153:515 (1998).

    PubMed  CAS  Google Scholar 

  58. B. Zhang, J. Hirahashi, X. Cullere, and T. N. Mayadas. Elucidation of molecular events leading to neutrophil apoptosis following phagocytosis: cross-talk between caspase 8, reactive oxygen species, and MAPK/ERK activation. J. Biol. Chem. 278:28443 (2003). doi:10.1074/jbc.M210727200.

    Article  PubMed  CAS  Google Scholar 

  59. N. Kaplowitz. Biochemical and cellular mechanisms of toxic liver injury. Semin. Liver. Dis. 22:137 (2002). doi:10.1055/s-2002-30100.

    Article  PubMed  CAS  Google Scholar 

  60. M. L. Bajt, S.L. Vonderfecht, and H. Jaeschke. Differential protection with inhibitors of caspase-8 and caspase-3 in murine models of tumor necrosis factor and Fas receptor-mediated hepatocellular apoptosis. Toxicol. Appl. Pharmacol. 175:243 (2001). doi:10.1006/taap.2001.9242.

    Article  PubMed  CAS  Google Scholar 

  61. S. M. Riordan, and R. Williams. Mechanisms of hepatocyte injury, multiorgan failure, and prognostic criteria in acute liver failure. Semin. Liver. Dis. 23:203 (2003). doi:10.1055/s-2003-42639.

    Article  PubMed  CAS  Google Scholar 

  62. M. E. Guicciardi, and G. J. Gores. Apoptosis: a mechanism of acute and chronic liver injury. Gut. 54:1024 (2005). doi:10.1136/gut.2004.053850.

    Article  PubMed  CAS  Google Scholar 

  63. M. A. El-Mahdy, Q. Zhu, Q. E. Wang, G. Wani, S. Patnaik, Q. Zhao, E. S. Arafa, B. Barakat, S. N. Mir, and A. A. Wani. Naringenin protects HaCaT human keratinocytes against UVB-induced apoptosis and enhances the removal of cyclobutane pyrimidine dimers from the genome. Photochem. Photobiol. 84(2):307–316 (2007).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mrs. Shui-Chin Lu (Department of Medical Research, Kaohsiung Medical University) for technical support with the TEM. This study was supported by a research grant from the National Science Council of Taiwan (NSC 97-2313-B-037-001-MY3).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thau-Ming Cham or Chun-Ching Lin.

Additional information

Feng-Lin Yen and Tzu-Hui Wu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yen, FL., Wu, TH., Lin, LT. et al. Naringenin-Loaded Nanoparticles Improve the Physicochemical Properties and the Hepatoprotective Effects of Naringenin in Orally-Administered Rats with CCl4-Induced Acute Liver Failure. Pharm Res 26, 893–902 (2009). https://doi.org/10.1007/s11095-008-9791-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9791-0

KEY WORDS

Navigation