Skip to main content

Advertisement

Log in

Sonoporation of the Minicircle-VEGF165 for Wound Healing of Diabetic Mice

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study is to examine the efficiency of sonoporation with minicircle DNA for the skin wound healing in diabetic mice.

Methods

Minicircle DNA containing the human VEGF165 was constructed and tested in vitro. Diabetes was induced in 2-week old male C57BL/6J mice via streptozotocin (STZ) injection. 6 mm circular skin wounds were made on the mice back. After the subcutaneous injection of the minicircle DNA at the edge of the wound, the mice were exposed to the ultrasound irradiation for the sonoporation. Wound areas were analyzed until the day 12. Blood perfusion and angiogenesis were evaluated using a laser Doppler imaging and CD31 immunostaining, respectively. Re-epithelialization was assessed by histochemical analysis using hematoxylin and eosin staining.

Results

Accelerated wound closure was observed in the mice receiving sonoporation of minicircle-VEGF165, which corresponds to the markedly increased skin blood perfusion and CD31 expression. Histological analysis revealed that the minicircle treated wound tissues showed fully restored normal architectures as compared with the non-treated diabetic controls with the markedly edematous and chaotic morphologies.

Conclusions

Ultrasound mediated gene therapy with the minicircle-VEGF165 is effective for the healing of the skin wound of the diabetic mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P. Martin. Wound healing—aiming for perfect skin regeneration. Science. 276:75–81 (1997) doi:10.1126/science.276.5309.75.

    Article  PubMed  CAS  Google Scholar 

  2. A. J. Singer, and R. A. Clark. Cutaneous wound healing. N. Engl. J. Med. 341:738–746 (1999) doi:10.1056/NEJM199909023411006.

    Article  PubMed  CAS  Google Scholar 

  3. S. Enoch, and D.J. Leaper. Basic science of wound healing. Surgery(Oxford). 26:31–37 (2008) doi:10.1016/j.mpsur.2007.11.005.

    Google Scholar 

  4. M. A. Loot, S. B. Kenter, F. L. Au, W. J. van Galen, E. Middelkoop, J. D. Bos, and J. R. Mekkes. Fibroblasts derived from chronic diabetic ulcers differ in their response to stimulation with EGF, IGF-I, bFGF and PDGF-AB compared to controls. Eur. J. Cell Biol. 81:153–160 (2002) doi:10.1078/0171-9335-00228.

    Article  PubMed  Google Scholar 

  5. M. A. Loots, E. N. Lamme, J. Zeegelaar, J. R. Mekkes, J. D. Bos, and E. Middelkoop. Differences in cellular infiltrate and extracellular matrix of chronic diabetic and venous ulcers versus acute wounds. J. Invest. Dermatol. 111:850–857 (1998) doi:10.1046/j.1523-1747.1998.00381.x.

    Article  PubMed  CAS  Google Scholar 

  6. W. J. Jeffcoate, and K. G. Harding. Diabetic foot ulcers. Lancet. 361:1545–1551 (2003) doi:10.1016/S0140-6736(03)13169-8.

    Article  PubMed  Google Scholar 

  7. T. Dinh, and A. Veves. Microcirculation of the diabetic foot. Curr. Pharm. Des. 11:2301–9 (2005) doi:10.2174/1381612054367328.

    Article  PubMed  CAS  Google Scholar 

  8. Y. Tsurumi, S. Takeshita, D. Chen, M. Kearney, S. T. Rossow, J. Passeri, J. R. Horowitz, J. F. Symes, and J. M. Isner. Direct intramuscular gene transfer of naked DNA encoding vascular endothelial growth factor augments collateral development and tissue perfusion. Circulation. 94:3281–3290 (1996).

    PubMed  CAS  Google Scholar 

  9. J. Folkman. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med. 1:27–31 (1995) doi:10.1038/nm0195-27.

    Article  PubMed  CAS  Google Scholar 

  10. V. Falanga. The chronic wound: impaired healing and solutions in the context of wound bed preparation. Blood Cells Mol. Diseases. 32:88–94 (2004) doi:10.1016/j.bcmd.2003.09.020.

    Article  CAS  Google Scholar 

  11. J. Plouet, J. Schilling, and D. Gospodarowicz. Isolation and characterization of a newly identified endothelial cell mitogen produced by AtT-20 cells. EMBO J. 8:3801–3806 (1989).

    PubMed  CAS  Google Scholar 

  12. N. Ferrara, and W. J. Henzel. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem. Biophys. Res. Commun. 161:851–858 (1989) doi:10.1016/0006-291X(89)92678-8.

    Article  PubMed  CAS  Google Scholar 

  13. T. Alon, I. Hemo, A. Itin, J. Pe’er, J. Stone, and E. Keshet. Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat. Med. 1:1024–1028 (1995) doi:10.1038/nm1095-1024.

    Article  PubMed  CAS  Google Scholar 

  14. F. Yuan, Y. Chen, M. Dellian, N. Safabakhsh, N. Ferrara, and R. K. Jain. Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody. Proc. Natl. Acad. Sci. U. S. A. 93:14765–14770 (1996) doi:10.1073/pnas.93.25.14765.

    Article  PubMed  CAS  Google Scholar 

  15. K. A. Houck, N. Ferrara, J. Winer, G. Cachianes, B. Li, and D. W. Leung. The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol. Endocrinol. 5:1806–1814 (1991).

    Article  PubMed  CAS  Google Scholar 

  16. B. Deodato, N. Arsic, L. Zentilin, M. Galeano, D. Santoro, V. Torre, D. Altavilla, D. Valdembri, F. Bussolino, F. Squadrito, and M. Giacca. Recombinant AAV vector encoding human VEGF165 enhances wound healing. Gene Ther. 9:777–785 (2002) doi:10.1038/sj.gt.3301697.

    Article  PubMed  CAS  Google Scholar 

  17. H. J. Kim, J. F. Greenleaf, R. R. Kinnick, J. T. Bronk, and M. E. Bolander. Ultrasound-mediated transfection of mammalian cells. Hum. Gene Ther. 7:1339–1346 (1996) doi:10.1089/hum.1996.7.11-1339.

    Article  PubMed  CAS  Google Scholar 

  18. D. B. Tata, F. Dunn, and D. J. Tindall. Selective clinical ultrasound signals mediate differential gene transfer and expression in two human prostate cancer cell lines: LnCap and PC-3. Biochem. Biophys. Res. Commun. 234:64–67 (1997) doi:10.1006/bbrc.1997.6578.

    Article  PubMed  CAS  Google Scholar 

  19. S. Bao, B. D. Thrall, and D. L. Miller. Transfection of a reporter plasmid into cultured cells by sonoporation in vitro. Ultrasound Med. Biol. 23:953–959 (1997) doi:10.1016/S0301-5629(97)00025-2.

    Article  PubMed  CAS  Google Scholar 

  20. P. A. Grayburn. Current and future contrast agents. Echocardiography. 19:259–265 (2002) doi:10.1046/j.1540-8175.2002.00259.x.

    Article  PubMed  Google Scholar 

  21. M. W. Miller. Gene transfection and drug delivery. Ultrasound Med. Biol. 26(Suppl 1):S59–S62 (2000) doi:10.1016/S0301-5629(00)00166-6.

    Article  PubMed  Google Scholar 

  22. A. M. Darquet, B. Cameron, P. Wils, D. Scherman, and J. Crouzet. A new DNA vehicle for nonviral gene delivery: supercoiled minicircle. Gene Ther. 4:1341–1349 (1997) doi:10.1038/sj.gt.3300540.

    Article  PubMed  CAS  Google Scholar 

  23. A. M. Darquet, R. Rangara, P. Kreiss, B. Schwartz, S. Naimi, P. Delaere, J. Crouzet, and D. Scherman. Minicircle: an improved DNA molecule for in vitro and in vivo gene transfer. Gene Ther. 6:209–218 (1999) doi:10.1038/sj.gt.3300816.

    Article  PubMed  CAS  Google Scholar 

  24. Z. Y. Chen, C. Y. He, A. Ehrhardt, and M. A. Kay. Minicircle DNA vectors devoid of bacterial DNA result in persistent and high-level transgene expression in vivo. Mol. Ther. 8:495–500 (2003) doi:10.1016/S1525-0016(03)00168-0.

    Article  PubMed  CAS  Google Scholar 

  25. K. Ramabadran, M. Bansinath, H. Turndorf, and M. M. Puig. The hyperalgesic effect of naloxone is attenuated in streptozotocin-diabetic mice. Psychopharmacology (Berl). 97:169–174 (1989) doi:10.1007/BF00442244.

    Article  CAS  Google Scholar 

  26. M. Anjaneyulu, and P. Ramarao. Studies on gastrointestinal tract functional changes in diabetic animals. Methods Find. Exp. Clin. Pharmacol. 24:71–75 (2002) doi:10.1358/mf.2002.24.2.677129.

    Article  PubMed  CAS  Google Scholar 

  27. E. L. Weber, and P. M. Cannon. Promoter choice for retroviral vectors: transcriptional strength versus trans-activation potential. Hum. Gene Ther. 18:849–860 (2007) doi:10.1089/hum.2007.067.

    Article  PubMed  CAS  Google Scholar 

  28. H. Hee. Ahn, M. S. Lee, M. H. Cho, Y. N. Shin, J. H. Lee, K. S. Kim, M. S. Kim, G. Khang, K. C. Hwang, I. W. Lee, S. L. Diamonde, and H. B. Lee. DNA/PEI nano-particles for gene delivery of rat bone marrow stem cells. Colloids Surf. A, Physicochem. Eng. Asp. 328:1–7 (2008) doi:10.1016/j.colsurfa.2008.06.011.

    Article  CAS  Google Scholar 

  29. H. Lv, S. Zhang, B. Wang, S. Cui, and J. Yan. Toxicity of cationic lipids and cationic polymers in gene delivery. J. Control. Release. 114:100–9 (2006) doi:10.1016/j.jconrel.2006.04.014.

    Article  PubMed  CAS  Google Scholar 

  30. S. Mehier-Humbert, and R. H. Guy. Physical methods for gene transfer: improving the kinetics of gene delivery into cells. Adv. Drug Deliv. Rev. 57:733–53 (2005) doi:10.1016/j.addr.2004.12.007.

    Article  PubMed  CAS  Google Scholar 

  31. E. Seifter, G. Rettura, J. Padawer, F. Stratford, D. Kambosos, and S. M. Levenson. Impaired wound healing in streptozotocin diabetes. Prevention by supplemental vitamin A. Ann. Surg. 194:42–50 (1981) doi:10.1097/00000658-198107000-00008.

    Article  PubMed  CAS  Google Scholar 

  32. R. Tsuboi, C. M. Shi, D. B. Rifkin, and H. Ogawa. A wound healing model using healing-impaired diabetic mice. J. Dermatol. 19(11):673–675 (1992).

    PubMed  CAS  Google Scholar 

  33. W. J. Schnedl, S. Ferber, J. H. Johnson, and C. B. Newgard. STZ transport and cytotoxicity. Specific enhancement in GLUT2-expressing cells. Diabetes. 43:1326–1333 (1994) doi:10.2337/diabetes.43.11.1326.

    Article  PubMed  CAS  Google Scholar 

  34. G. Lauer, S. Sollberg, M. Cole, I. Flamme, J. Sturzebecher, K. Mann, T. Krieg, and S. A. Eming. Expression and proteolysis of vascular endothelial growth factor is increased in chronic wounds. J. Invest. Dermatol. 115:12–18 (2000) doi:10.1046/j.1523-1747.2000.00036.x.

    Article  PubMed  CAS  Google Scholar 

  35. B. A. Mast, and G. S. Schultz. Interactions of cytokines, growth factors, and proteases in acute and chronic wounds. Wound Repair Regen. 4:411–420 (1996) doi:10.1046/j.1524-475X.1996.40404.x.

    Article  PubMed  CAS  Google Scholar 

  36. Y. Taniyama, K. Tachibana, K. Hiraoka, M. Aoki, S. Yamamoto, K. Matsumoto, T. Nakamura, T. Ogihara, Y. Kaneda, and R. Morishita. Development of safe and efficient novel nonviral gene transfer using ultrasound: enhancement of transfection efficiency of naked plasmid DNA in skeletal muscle. Gene Ther. 9:372–80 (2002) doi:10.1038/sj.gt.3301678.

    Article  PubMed  CAS  Google Scholar 

  37. Q. L. Lu, H. D. Liang, T. Partridge, and M. J. Blomley. Microbubble ultrasound improves the efficiency of gene transduction in skeletal muscle in vivo with reduced tissue damage. Gene Ther. 10:396–405 (2003) doi:10.1038/sj.gt.3301913.

    Article  PubMed  CAS  Google Scholar 

  38. Y. Taniyama, K. Tachibana, K. Hiraoka, T. Namba, K. Yamasaki, N. Hashiya, M. Aoki, T. Ogihara, K. Yasufumi, and R. Morishita. Local delivery of plasmid DNA into rat carotid artery using ultrasound. Circulation. 105:1233–1239 (2002) doi:10.1161/hc1002.105228.

    Article  PubMed  CAS  Google Scholar 

  39. P. E. Huber, M. J. Mann, L. G. Melo, A. Ehsan, D. Kong, L. Zhang, M. Rezvani, P. Peschke, F. Jolesz, V. J. Dzau, and K. Hynynen. Focused ultrasound (HIFU) induces localized enhancement of reporter gene expression in rabbit carotid artery. Gene Ther. 10:1600–1607 (2003) doi:10.1038/sj.gt.3302045.

    Article  PubMed  CAS  Google Scholar 

  40. S. Mayer, and P. A. Grayburn. Myocardial contrast agents: recent advances and future directions. Prog. Cardiovasc. Dis. 44:33–44 (2001) doi:10.1053/pcad.2001.26438.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The part of this work was accepted as an abstract at the 42nd Annual Meeting of the European Association for the Study of Diabetes in Denmark Copenhagen-Malmoe, September 2006. The present study was financially supported by the Inje University Research Grant 2005. We thank Dr. Mark A Kay (Stanford University) for generously providing plasmid p2øC31.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. H. Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoon, C.S., Jung, H.S., Kwon, M.J. et al. Sonoporation of the Minicircle-VEGF165 for Wound Healing of Diabetic Mice. Pharm Res 26, 794–801 (2009). https://doi.org/10.1007/s11095-008-9778-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9778-x

KEY WORDS

Navigation