Skip to main content

Advertisement

Log in

Bipartite Adenoviral Vector Encoding hHGF and hIL-1Ra for Improved Human Islet Transplantation

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Ex vivo gene therapy can improve the outcome of islet transplantation for treating type I diabetes. Hepatocyte growth factor (HGF) increases β-cell proliferation and promotes revascularization of islets, while interleukin-1 receptor antagonist (hIL-1Ra) inhibits islet cell apoptosis.

Methods

We constructed Adv-hHGF-hIL-1Ra by cloning hHGF and hIL-1Ra coding sequences and polyA signal under separate CMV promoters in Adenoquick plasmid.

Results

There was dose and time dependent expression of these genes after transduction of Adv-hHGF-hIL-1Ra into human islets. Compared to un-transduced islets, hHGF and hIL-1Ra gene expression at protein levels was more than 60 and 40 times higher at 1,000 MOI, respectively. Transduced islets were viable after incubation with the cocktail of TNF-α, IL-1β and IFN-γ, as evidenced by insulin release in response to glucose concentration. Co-expression of hHGF and hIL-1Ra led to significant decrease in caspase-3 induced by the cytokines. Compared to un-transduced islets, transduction of islets with Adv-hHGF-hIL-1Ra at 1,000 MOI prior to transplantation under the kidney capsules of streptozotocin-induced-diabetic NOD-SCID mice reduced blood glucose levels, and increased serum insulin and c-peptide levels.

Conclusions

Transduction of islets with Adv-hHGF-hIL-1Ra efficiently expresses both growth factor and antiapoptotic genes, decreases caspase-3 and improves the outcome of islet transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. A. Goss, A. P. Schock, F. C. Brunicardi, S. E. Goodpastor, A. J. Garber, G. Soltes, M. Barth, T. Froud, R. Alejandro, and C. Ricordi. Achievement of insulin independence in three consecutive type-1 diabetic patients via pancreatic islet transplantation using islets isolated at a remote islet isolation center. Transplantation. 74:1761–1766 (2002). doi:10.1097/00007890-200212270-00020.

    Article  PubMed  CAS  Google Scholar 

  2. A. M. Shapiro, J. R. Lakey, E. A. Ryan, G. S. Korbutt, E. Toth, G. L. Warnock, N. M. Kneteman, and R. V. Rajotte. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N. Engl. J. Med. 343:230–238 (2000). doi:10.1056/NEJM200007273430401.

    Article  PubMed  CAS  Google Scholar 

  3. E. A. Ryan, J. R. Lakey, R. V. Rajotte, G. S. Korbutt, T. Kin, S. Imes, A. Rabinovitch, J. F. Elliott, D. Bigam, N. M. Kneteman, G. L. Warnock, I. Larsen, and A. M. Shapiro. Clinical outcomes and insulin secretion after islet transplantation with the Edmonton protocol. Diabetes. 50:710–719 (2001). doi:10.2337/diabetes.50.4.710.

    Article  PubMed  CAS  Google Scholar 

  4. T. Berney, and C. Ricordi. Islet cell transplantation: the future? Langenbecks Arch. Surg. 385:373–378 (2000). doi:10.1007/s004230000118.

    Article  PubMed  CAS  Google Scholar 

  5. M. D. Menger, P. Vajkoczy, C. Beger, and K. Messmer. Orientation of microvascular blood flow in pancreatic islet isografts. J. Clin. Invest. 93:2280–2285 (1994). doi:10.1172/JCI117228.

    Article  PubMed  CAS  Google Scholar 

  6. A. S. Narang, K. Cheng, J. Henry, C. Zhang, O. Sabek, D. Fraga, M. Kotb, A. O. Gaber, and R. I. Mahato. Vascular endothelial growth factor gene delivery for revascularization in transplanted human islets. Pharm. Res. 21:15–25 (2004). doi:10.1023/B:PHAM.0000012147.52900.b8.

    Article  PubMed  CAS  Google Scholar 

  7. K. Cheng, D. Fraga, C. Zhang, M. Kotb, A. O. Gaber, R. V. Guntaka, and R. I. Mahato. Adenovirus-based vascular endothelial growth factor gene delivery to human pancreatic islets. Gene Ther. 11:1105–1116 (2004). doi:10.1038/sj.gt.3302267.

    Article  PubMed  CAS  Google Scholar 

  8. P. Vajkoczy, A. M. Olofsson, H. A. Lehr, R. Leiderer, F. Hammersen, K. E. Arfors, and M. D. Menger. Histogenesis and ultrastructure of pancreatic islet graft microvasculature. Evidence for graft revascularization by endothelial cells of host origin. Am. J. Pathol. 146:1397–1405 (1995).

    PubMed  CAS  Google Scholar 

  9. G. M. Beattie, A. M. Montgomery, A. D. Lopez, E. Hao, B. Perez, M. L. Just, J. R. Lakey, M. E. Hart, and A. Hayek. A novel approach to increase human islet cell mass while preserving beta-cell function. Diabetes. 51:3435–3439 (2002). doi:10.2337/diabetes.51.12.3435.

    Article  PubMed  CAS  Google Scholar 

  10. A. Garcia-Ocana, R. C. Vasavada, A. Cebrian, V. Reddy, K. K. Takane, J. C. Lopez-Talavera, and A. F. Stewart. Transgenic overexpression of hepatocyte growth factor in the beta-cell markedly improves islet function and islet transplant outcomes in mice. Diabetes. 50:2752–2762 (2001). doi:10.2337/diabetes.50.12.2752.

    Article  PubMed  CAS  Google Scholar 

  11. A. Garcia-Ocana, K. K. Takane, V. T. Reddy, J. C. Lopez-Talavera, R. C. Vasavada, and A. F. Stewart. Adenovirus-mediated hepatocyte growth factor expression in mouse islets improves pancreatic islet transplant performance and reduces beta cell death. J. Biol. Chem. 278:343–351 (2003). doi:10.1074/jbc.M207848200.

    Article  PubMed  CAS  Google Scholar 

  12. J. M. Benns, J. S. Choi, R. I. Mahato, J. S. Park, and S. W. Kim. pH-sensitive cationic polymer gene delivery vehicle: N-Ac-poly(L-histidine)-graft-poly(L-lysine) comb shaped polymer. Bioconjug. Chem. 11:637–645 (2000). doi:10.1021/bc0000177.

    Article  PubMed  CAS  Google Scholar 

  13. J. Roccisana, V. Reddy, R. C. Vasavada, J. A. Gonzalez-Pertusa, M. A. Magnuson, and A. Garcia-Ocana. Targeted inactivation of hepatocyte growth factor receptor c-met in beta-cells leads to defective insulin secretion and GLUT-2 downregulation without alteration of beta-cell mass. Diabetes. 54:2090–2102 (2005). doi:10.2337/diabetes.54.7.2090.

    Article  PubMed  CAS  Google Scholar 

  14. A. K. Cardozo, P. Proost, C. Gysemans, M. C. Chen, C. Mathieu, and D. L. Eizirik. IL-1beta and IFN-gamma induce the expression of diverse chemokines and IL-15 in human and rat pancreatic islet cells, and in islets from pre-diabetic NOD mice. Diabetologia. 46:255–266 (2003).

    PubMed  CAS  Google Scholar 

  15. M. J. Fontaine, and W. Fan. Islet cell transplantation as a cure for insulin dependent diabetes: current improvements in preserving islet cell mass and function. Hepatobiliary Pancreat Dis. Int. 2:170–179 (2003).

    PubMed  Google Scholar 

  16. N. Tellez, M. Montolio, M. Biarnes, E. Castano, J. Soler, and E. Montanya. Adenoviral overexpression of interleukin-1 receptor antagonist protein increases beta-cell replication in rat pancreatic islets. Gene Ther. 12:120–128 (2005). doi:10.1038/sj.gt.3302351.

    Article  PubMed  CAS  Google Scholar 

  17. N. Giannoukakis, W. A. Rudert, S. C. Ghivizzani, A. Gambotto, C. Ricordi, M. Trucco, and P. D. Robbins. Adenoviral gene transfer of the interleukin-1 receptor antagonist protein to human islets prevents IL-1beta-induced beta-cell impairment and activation of islet cell apoptosis in vitro. Diabetes. 48:1730–1736 (1999). doi:10.2337/diabetes.48.9.1730.

    Article  PubMed  CAS  Google Scholar 

  18. J. O. Sandberg, D. L. Eizirik, and S. Sandler. IL-1 receptor antagonist inhibits recurrence of disease after syngeneic pancreatic islet transplantation to spontaneously diabetic non-obese diabetic (NOD) mice. Clin. Exp. Immunol. 108:314–317 (1997). doi:10.1046/j.1365-2249.1997.3771275.x.

    Article  PubMed  CAS  Google Scholar 

  19. P. Boros, and C. M. Miller. Hepatocyte growth factor: a multifunctional cytokine. Lancet. 345:293–295 (1995). doi:10.1016/S0140-6736(95)90279-1.

    Article  PubMed  CAS  Google Scholar 

  20. A. S. Narang, and R. I. Mahato. Biological and biomaterial approaches for improved islet transplantation. Pharmacol. Rev. 58:194–243 (2006). doi:10.1124/pr.58.2.6.

    Article  PubMed  CAS  Google Scholar 

  21. M. Nakano, Y. Yasunami, T. Maki, S. Kodama, Y. Ikehara, T. Nakamura, M. Tanaka, and S. Ikeda. Hepatocyte growth factor is essential for amelioration of hyperglycemia in streptozotocin-induced diabetic mice receiving a marginal mass of intrahepatic islet grafts. Transplantation. 69:214–221 (2000). doi:10.1097/00007890-200001270-00004.

    Article  PubMed  CAS  Google Scholar 

  22. J. O. Sandberg, D. L. Eizirik, S. Sandler, D. E. Tracey, and A. Andersson. Treatment with an interleukin-1 receptor antagonist protein prolongs mouse islet allograft survival. Diabetes. 42:1845–1851 (1993). doi:10.2337/diabetes.42.12.1845.

    Article  PubMed  CAS  Google Scholar 

  23. S. Ramachandran, N. M. Desai, T. A. Goers, N. Benshoff, B. Olack, S. Shenoy, M. D. Jendrisak, W. C. Chapman, and T. Mohanakumar. Improved islet yields from pancreas preserved in perflurocarbon is via inhibition of apoptosis mediated by mitochondrial pathway. Am J Transplant. 6:1696–1703 (2006). doi:10.1111/j.1600-6143.2006.01368.x.

    Article  PubMed  CAS  Google Scholar 

  24. J. Hanke. Apoptosis and occurrence of Bcl-2, Bak, Bax, Fas and FasL in the developing and adult rat endocrine pancreas. Anat. Embryol. (Berl). 202:303–312 (2000). doi:10.1007/s004290000112.

    Article  CAS  Google Scholar 

  25. X. Jiang, and X. Wang. Cytochrome C-mediated apoptosis. Annu. Rev. Biochem. 73:87–106 (2004). doi:10.1146/annurev.biochem.73.011303.073706.

    Article  PubMed  CAS  Google Scholar 

  26. J. C. Lopez-Talavera, A. Garcia-Ocana, I. Sipula, K. K. Takane, I. Cozar-Castellano, and A. F. Stewart. Hepatocyte growth factor gene therapy for pancreatic islets in diabetes: reducing the minimal islet transplant mass required in a glucocorticoid-free rat model of allogeneic portal vein islet transplantation. Endocrinology. 145:467–474 (2004). doi:10.1210/en.2003-1070.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the National Institute of Health (NIH) for financial support (RO1 DK69968).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram I. Mahato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panakanti, R., Mahato, R.I. Bipartite Adenoviral Vector Encoding hHGF and hIL-1Ra for Improved Human Islet Transplantation. Pharm Res 26, 587–596 (2009). https://doi.org/10.1007/s11095-008-9777-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9777-y

KEY WORDS

Navigation