Skip to main content

Advertisement

Log in

Changes in Gene Expression Pattern of Human Primary Macrophages Induced by Carbosilane Dendrimer 2G-NN16

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

An Erratum to this article was published on 30 November 2010

Abstract

Purpose

The use of dendrimers for biomedical applications has emerged with promising results. 2G-NN16 is a carbosilane dendrimer with sixteen positive charges per molecule tested to be capable to bind and release antisense oligonucleotides (ODNs) and small interference RNA (siRNA) in vitro. In spite of low cytotoxicity observed for these dendrimers, little is known about cellular changes they produce in cells in general and in immune cells in particular.

Materials and Methods

Genomic technologies allow us to identify global gene expression profile changes in macrophages exposed to a non-toxic concentration (5 µM) of 2G-NN16, alone or complexed with a random siRNA (dendriplex). Results were confirmed by quantitative real-time RT-PCR.

Results

Exposing macrophages to this dendrimer or dendriplex causes multiple gene expression changes, but no specific action of random siRNA was detected. Pathway analysis of differentially expressed genes shows the altered functions to be immune response, proliferation and transcription regulation. Interleukin 17F (IL17F) was the most regulated gene.

Conclusions

Global gene expression profiles are a highly sensitive method to measure the toxicity degree of a gene delivery vehicle. The strong repression of IL17F, IL23R and IL23A, all of which are involved in autoimmune disease, by this particular dendrimer suggests a potential pharmacological application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

2G-NN16:

\(2G - \left[ {Si\left\{ {O\left( {CH_2 } \right)_2 N(Me)_2^ + \left( {CH_2 } \right)_2 NMe_3^ + \left( {I^ - } \right)2} \right\}} \right]_8 \)

ALDOA:

aldolase A, fructose-bisphosphate

AOC3:

amine oxidase, copper containing 3

C18ORF10:

chromosome 18 open reading frame 10

CCND3:

cyclin D3

CCR1:

chemokine (C–C motif) receptor 1

CCR2:

chemokine (C–C motif) receptor 2

CD74:

CD74 antigen

CR2:

complement component (3d/Epstein Barr virus) receptor 2

CXCL1:

chemokine (C-X-C motif) ligand 1

CXCL2:

chemokine (C–X–C motif) ligand 2

G-CSF:

granulocyte colony-stimulating factor

H3F3B:

H3 histone, family 3B

HIST1H4B:

histone cluster 1, H4b

IL17F:

Interleukin 17F

IL1B:

Interleukin 1B

IL2:

Interleukin 2

IL23A:

Interleukin 23A

IL23R:

Interleukin 23 Receptor

IL6:

Interleukin 6

IL8:

Interleukin 8

INF-γ:

Interferon gamma

IPA:

Ingenuity Pathways Analysis

LDH:

Lactate dehydrogenase

MDK:

midkine (neurite growth-promoting factor 2)

MIP1-a:

Macrophage inflammatory protein 1a

MIP1-b:

Macrophage inflammatory protein 1b

MLLT6:

myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog, Drosophila); translocated to, 6

NFKB1A:

nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha

ODNs:

Oligonucleotide antisense

PAMAM:

polyamidoamine dendrimers

PBMCs:

peripheral blood mononuclear cells

PI:

propide iodide

PRDX2:

peroxiredoxin 2

PTMA:

prothymosin, alpha

qRT-PCR:

quantitative reverse transcription polymerase chain reaction

siRNA:

small interference RNA

SLC1A2:

arrier family 1 (glial high affinity glutamate transporter), member 2

SYVN1:

synovial apoptosis inhibitor 1, synoviolin

TIA1:

TIA1 cytotoxic granule-associated RNA binding protein

TNF-α:

tumor necrosis factor, alpha

References

  1. S. D. Caruthers, S. A. Wickline, and G. M. Lanza. Nanotechnological applications in medicine. Curr. Opin. Biotechnol. 18:26–30 (2007). doi:10.1016/j.copbio.2007.01.006.

    Article  PubMed  CAS  Google Scholar 

  2. P. S. Lai, P. J. Lou, C. L. Peng, C. L. Pai, W. N. Yen, M. Y. Huang, T. H. Young, and M. J. Shieh. Doxorubicin delivery by polyamidoamine dendrimer conjugation and photochemical internalization for cancer therapy. J. Control. Release. 122:39–46 (2007). doi:10.1016/j.jconrel.2007.06.012.

    Article  PubMed  CAS  Google Scholar 

  3. H. Kang, R. DeLong, M. H. Fisher, and R. L. Juliano. Tat-conjugated PAMAM dendrimers as delivery agents for antisense and siRNA oligonucleotides. Pharm. Res. 22:2099–2106 (2005). doi:10.1007/s11095-005-8330-5.

    Article  PubMed  CAS  Google Scholar 

  4. D. H. Kim, M. Longo, Y. Han, P. Lundberg, E. Cantin, and J. J. Rossi. Interferon induction by siRNAs and ssRNAs synthesized by phage polymerase. Nat. Biotechnol. 22:321–325 (2004). doi:10.1038/nbt940.

    Article  PubMed  CAS  Google Scholar 

  5. T. M. Fahmy, J. P. Schneck, and W. M. Saltzman. A nanoscopic multivalent antigen-presenting carrier for sensitive detection and drug delivery to T cells. Nanomedicine. 3:75–85 (2007).

    PubMed  CAS  Google Scholar 

  6. J. F. Bermejo, P. Ortega, L. Chonco, R. Eritja, R. Samaniego, M. Mullner, E. de Jesus, F. J. de la Mata, J. C. Flores, R. Gomez, and A. Munoz-Fernandez. Water-soluble carbosilane dendrimers: synthesis biocompatibility and complexation with oligonucleotides; evaluation for medical applications. Chem. Eur. J. 13:483–495 (2007). doi:10.1002/chem.200600594.

    Article  CAS  Google Scholar 

  7. R. Duncan, and L. Izzo. Dendrimer biocompatibility and toxicity. Adv. Drug Deliv. Rev. 57:2215–2237 (2005). doi:10.1016/j.addr.2005.09.019.

    Article  PubMed  CAS  Google Scholar 

  8. S. Kawakami, J. Wong, A. Sato, Y. Hattori, F. Yamashita, and M. Hashida. Biodistribution characteristics of mannosylated, fucosylated, and galactosylated liposomes in mice. Biochim. Biophys. Acta. 1524:258–265 (2000).

    PubMed  CAS  Google Scholar 

  9. J. H. Kuo, M. S. Jan, and Y. L. Lin. Interactions between U-937 human macrophages and poly(propyleneimine) dendrimers. J. Control. Release. 120:51–59 (2007). doi:10.1016/j.jconrel.2007.03.019.

    Article  PubMed  CAS  Google Scholar 

  10. L. Chonco, J. F. Bermejo-Martin, P. Ortega, D. Shcharbin, E. Pedziwiatr, B. Klajnert, F. J. de la Mata, R. Eritja, R. Gomez, M. Bryszewska, and M. A. Munoz-Fernandez. Water-soluble carbosilane dendrimers protect phosphorothioate oligonucleotides from binding to serum proteins. Org. Biomol. Chem. 5:1886–1893 (2007). doi:10.1039/b703989a.

    Article  PubMed  CAS  Google Scholar 

  11. A. J. Hollins, Y. Omidi, I. F. Benter, and S. Akhtar. Toxicogenomics of drug delivery systems: Exploiting delivery system-induced changes in target gene expression to enhance siRNA activity. J. Drug Target. 15:83–88 (2007). doi:10.1080/10611860601151860.

    Article  PubMed  CAS  Google Scholar 

  12. R. Edgar, M. Domrachev, and A. E. Lash. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic. Acids Res. 30:207–210 (2002). doi:10.1093/nar/30.1.207.

    Article  PubMed  CAS  Google Scholar 

  13. D. Rubio, S. Garcia, M. F. Paz, T. De la Cueva, L. A. Lopez-Fernandez, A. C. Lloyd, J. Garcia-Castro, and A. Bernad. Molecular characterization of spontaneous mesenchymal stem cell transformation. PLoS One. 3:e1398 (2008). doi:10.1371/journal.pone.0001398.

    Article  PubMed  Google Scholar 

  14. P. B. Dallas, N. G. Gottardo, M. J. Firth, A. H. Beesley, K. Hoffmann, P. A. Terry, J. R. Freitas, J. M. Boag, A. J. Cummings, and U. R. Kees. Gene expression levels assessed by oligonucleotide microarray analysis and quantitative real-time RT-PCR—how well do they correlate? BMC Genomics. 6:59 (2005). doi:10.1186/1471-2164-6-59.

    Article  PubMed  Google Scholar 

  15. B. Oppmann, R. Lesley, B. Blom, J. C. Timans, Y. Xu, B. Hunte, F. Vega, N. Yu, J. Wang, K. Singh, F. Zonin, E. Vaisberg, T. Churakova, M. Liu, D. Gorman, J. Wagner, S. Zurawski, Y. Liu, J. S. Abrams, K. W. Moore, D. Rennick, R. de Waal-Malefyt, C. Hannum, J. F. Bazan, and R. A. Kastelein. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity. 13:715–725 (2000). doi:10.1016/S1074-7613(00)00070-4.

    Article  PubMed  CAS  Google Scholar 

  16. N. K. Jain, and A. Asthana. Dendritic systems in drug delivery applications. Expert Opin. Drug Deliv. 4:495–512 (2007). doi:10.1517/17425247.4.5.495.

    Article  PubMed  CAS  Google Scholar 

  17. R. Rupp, S. L. Rosenthal, and L. R. Stanberry. VivaGel (SPL7013 Gel): a candidate dendrimer–microbicide for the prevention of HIV and HSV infection. Int. J. Nanomedicine. 2:561–566 (2007).

    PubMed  CAS  Google Scholar 

  18. F. Alexis, J. W. Rhee, J. P. Richie, A. F. Radovic-Moreno, R. Langer, and O. C. Farokhzad. New frontiers in nanotechnology for cancer treatment. Urol. Oncol. 26:74–85 (2008). doi:10.1016/j.urolonc.2007.03.017.

    PubMed  CAS  Google Scholar 

  19. L. Vannucci, A. Fiserova, K. Sadalapure, T. K. Lindhorst, M. Kuldova, P. Rossmann, O. Horvath, V. Kren, P. Krist, K. Bezouska, M. Luptovcova, F. Mosca, and M. Pospisil. Effects of N-acetyl-glucosamine-coated glycodendrimers as biological modulators in the B16F10 melanoma model in vivo. Int. J. Oncol. 23:285–296 (2003).

    PubMed  CAS  Google Scholar 

  20. S. Shaunak, S. Thomas, E. Gianasi, A. Godwin, E. Jones, I. Teo, K. Mireskandari, P. Luthert, R. Duncan, S. Patterson, P. Khaw, and S. Brocchini. Polyvalent dendrimer glucosamine conjugates prevent scar tissue formation. Nat. Biotechnol. 22:977–984 (2004). doi:10.1038/nbt995.

    Article  PubMed  CAS  Google Scholar 

  21. Y. Omidi, A. J. Hollins, R. M. Drayton, and S. Akhtar. Polypropylenimine dendrimer-induced gene expression changes: the effect of complexation with DNA, dendrimer generation and cell type. J. Drug Target. 13:431–443 (2005). doi:10.1080/10611860500418881.

    Article  PubMed  CAS  Google Scholar 

  22. S. Akhtar, and I. Benter. Toxicogenomics of non-viral drug delivery systems for RNAi: potential impact on siRNA-mediated gene silencing activity and specificity. Adv. Drug Deliv. Rev. 59:164–182 (2007). doi:10.1016/j.addr.2007.03.010.

    Article  PubMed  CAS  Google Scholar 

  23. T. Starnes, M. J. Robertson, G. Sledge, S. Kelich, H. Nakshatri, H. E. Broxmeyer, and R. Hromas. Cutting edge: IL-17F, a novel cytokine selectively expressed in activated T cells and monocytes, regulates angiogenesis and endothelial cell cytokine production. J. Immunol. 167:4137–4140 (2001).

    PubMed  CAS  Google Scholar 

  24. S. D. Hurst, T. Muchamuel, D. M. Gorman, J. M. Gilbert, T. Clifford, S. Kwan, S. Menon, B. Seymour, C. Jackson, T. T. Kung, J. K. Brieland, S. M. Zurawski, R. W. Chapman, G. Zurawski, and R. L. Coffman. New IL-17 family members promote Th1 or Th2 responses in the lung: in vivo function of the novel cytokine IL-25. J. Immunol. 169:443–453 (2002).

    PubMed  CAS  Google Scholar 

  25. S. G. Hymowitz, E. H. Filvaroff, J. P. Yin, J. Lee, L. Cai, P. Risser, M. Maruoka, W. Mao, J. Foster, R. F. Kelley, G. Pan, A. L. Gurney, A. M. de Vos, and M. A. Starovasnik. IL-17s adopt a cystine knot fold: structure and activity of a novel cytokine, IL-17F, and implications for receptor binding. EMBO J. 20:5332–5341 (2001). doi:10.1093/emboj/20.19.5332.

    Article  PubMed  CAS  Google Scholar 

  26. S. H. Chang, and C. Dong. A novel heterodimeric cytokine consisting of IL-17 and IL-17F regulates inflammatory responses. Cell Res. 17:435–440 (2007).

    PubMed  Google Scholar 

  27. J. F. Wright, Y. Guo, A. Quazi, D. P. Luxenberg, F. Bennett, J. F. Ross, Y. Qiu, M. J. Whitters, K. N. Tomkinson, K. Dunussi-Joannopoulos, B. M. Carreno, M. Collins, and N. M. Wolfman. Identification of an interleukin 17F/17A heterodimer in activated human CD4+ T cells. J. Biol. Chem. 282:13447–13455 (2007). doi:10.1074/jbc.M700499200.

    Article  PubMed  CAS  Google Scholar 

  28. K. I. Happel, P. J. Dubin, M. Zheng, N. Ghilardi, C. Lockhart, L. J. Quinton, A. R. Odden, J. E. Shellito, G. J. Bagby, S. Nelson, and J. K. Kolls. Divergent roles of IL-23 and IL-12 in host defense against Klebsiella pneumoniae. J. Exp. Med. 202:761–769 (2005). doi:10.1084/jem.20050193.

    Article  PubMed  CAS  Google Scholar 

  29. E. V. Acosta-Rodriguez, L. Rivino, J. Geginat, D. Jarrossay, M. Gattorno, A. Lanzavecchia, F. Sallusto, and G. Napolitani. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat. Immunol. 8:639–646 (2007). doi:10.1038/ni1467.

    Article  PubMed  CAS  Google Scholar 

  30. S. LeibundGut-Landmann, O. Gross, M. J. Robinson, F. Osorio, E. C. Slack, S. V. Tsoni, E. Schweighoffer, V. Tybulewicz, G. D. Brown, J. Ruland, and C. Reis e Sousa. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat. Immunol. 8:630–638 (2007). doi:10.1038/ni1460.

    Article  PubMed  CAS  Google Scholar 

  31. C. Lock, G. Hermans, R. Pedotti, A. Brendolan, E. Schadt, H. Garren, A. Langer-Gould, S. Strober, B. Cannella, J. Allard, P. Klonowski, A. Austin, N. Lad, N. Kaminski, S. J. Galli, J. R. Oksenberg, C. S. Raine, R. Heller, and L. Steinman. Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat. Med. 8:500–508 (2002). doi:10.1038/nm0502–500.

    Article  PubMed  CAS  Google Scholar 

  32. A. Vaknin-Dembinsky, K. Balashov, and H. L. Weiner. IL-23 is increased in dendritic cells in multiple sclerosis and down-regulation of IL-23 by antisense oligos increases dendritic cell IL-10 production. J. Immunol. 176:7768–7774 (2006).

    PubMed  CAS  Google Scholar 

  33. S. Fujino, A. Andoh, S. Bamba, A. Ogawa, K. Hata, Y. Araki, T. Bamba, and Y. Fujiyama. Increased expression of interleukin 17 in inflammatory bowel disease. Gut. 52:65–70 (2003). doi:10.1136/gut.52.1.65.

    Article  PubMed  CAS  Google Scholar 

  34. S. Kotake, N. Udagawa, N. Takahashi, K. Matsuzaki, K. Itoh, S. Ishiyama, S. Saito, K. Inoue, N. Kamatani, M. T. Gillespie, T. J. Martin, and T. Suda. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J. Clin. Invest. 103:1345–1352 (1999). doi:10.1172/JCI5703.

    Article  PubMed  CAS  Google Scholar 

  35. M. I. Koenders, L. A. Joosten, and W. B. van den Berg. Potential new targets in arthritis therapy: interleukin (IL)-17 and its relation to tumour necrosis factor and IL-1 in experimental arthritis. Ann. Rheum. Dis. 65(Suppl 3):iii29–iii33 (2006). doi:10.1136/ard.2006.058529.

    Article  PubMed  Google Scholar 

  36. M. B. Teunissen, C. W. Koomen, R. de Waal Malefyt, E. A. Wierenga, and J. D. Bos. Interleukin-17 and interferon-gamma synergize in the enhancement of proinflammatory cytokine production by human keratinocytes. J. Invest. Dermatol. 111:645–649 (1998). doi:10.1046/j.1523-1747.1998.00347.x.

    Article  PubMed  CAS  Google Scholar 

  37. F. Capon, P. Di Meglio, J. Szaub, N. J. Prescott, C. Dunster, L. Baumber, K. Timms, A. Gutin, V. Abkevic, A. D. Burden, J. Lanchbury, J. N. Barker, R. C. Trembath, and F. O. Nestle. Sequence variants in the genes for the interleukin-23 receptor (IL23R) and its ligand (IL12B) confer protection against psoriasis. Hum. Genet. 122:201–206 (2007). doi:10.1007/s00439-007-0397-0.

    Article  PubMed  CAS  Google Scholar 

  38. D. McGovern, and F. Powrie. The IL23 axis plays a key role in the pathogenesis of IBD. Gut. 56:1333–1336 (2007). doi:10.1136/gut.2006.115402.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Alberto Benguria for Pathways analyses, Laura Diaz for flow cytometer assays, Raquel Llorente for technical assistance and Keith Harshman for english corrections and critical reading of the manuscript. This work has been supported by grants from Fondo de Investigación Sanitaria (FIS) del Ministerio de Sanidad y Consumo (PI061479); Red RIS RD06-0006-0035; FIPSE (36514/05, 24534/05, 24632/07), Fundación Caja Navarra and Comunidad de Madrid (S-SAL-0159-2006) to MAMF and grant from Fondo Investigaciones Sanitarias del Ministerio de Sanidad y Consumo (CP06/0267) to LALF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis A. Lopez-Fernandez.

Additional information

L. A. Lopez-Fernandez and M. A. Muñoz-Fernández have equally contributed to this work.

An erratum to this article is available at http://dx.doi.org/10.1007/s11095-010-0328-y.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLS 81.5 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gras, R., Almonacid, L., Ortega, P. et al. Changes in Gene Expression Pattern of Human Primary Macrophages Induced by Carbosilane Dendrimer 2G-NN16. Pharm Res 26, 577–586 (2009). https://doi.org/10.1007/s11095-008-9776-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9776-z

KEY WORDS

Navigation