Skip to main content
Log in

Receptor-Specific Targeting with Liposomes In Vitro Based on Sterol-PEG1300 Anchors

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The challenge in developing liposomes to be used in active drug targeting is to design a method that can be used for modifying liposomal membranes that is applicable for a number of different specific ligands. In this study, the post insertion technique was used with activated sterol-PEG1300 anchors and was evaluated with regard to its effectiveness in active targeting in vitro. The key advantage of these anchors is that the insertion step into the liposomal membrane takes place at room temperature and is very fast.

Materials and Methods

For in vitro experiments, neuroblastoma cell lines overexpressing GD2 antigen on their surface as a target structure were chosen. This allowed the use of anti-GD2 antibodies coupled to the liposomal surface for testing of specific binding. These modified liposomes were labelled with rhodamine-PE and their cellular association was analyzed by flow cytometry.

Results

It was shown that the activated sterol-PEG1300 anchors allow specific and significant interactions of the modified liposomes with GD2 positive cells.

Conclusion

Coupling using sterol-PEG1300 anchors is both simple and rapid. It is reproducible and applicable for all ligands bearing amino groups. This method demonstrates the advantage of a ready-to-use system for the modification of pre-formed liposomes with different ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Ab:

antibody

BB:

borate buffer

BSA:

bovine serum albumine

CE:

coupling efficiency

Chol:

cholesterol

EE:

encapsulation efficiency

EPC:

egg phosphatidylcholine

HBS:

HEPES buffered saline

MAL-PEG2500-DSPE:

1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[maleimido-poly(ethyleneglycol)]

NHS:

N-hydroxysuccinimide

PBS:

phosphate buffered saline

PCS:

photon correlation spectroscopy

PEG:

poly(ethyleneglycol)

PIT:

post-insertion technique

PL:

phospholipid

Rh-PE:

rhodamine-B-PE

SPIT:

sterol-based post-insertion technique

sterol-PEG1300 :

soy sterol-poly(ethyleneglycol)-1300-ether

TL:

total lipid

TLC:

thin layer chromatography

TRE:

tresyl chloride (2,2,2-trifluoroethanesulfonylchloride)

2-IT:

2-iminothiolane

References

  1. J. M. Metselaar, E. Mastrobattista, and G. Storm. Liposomes for intravenous drug targeting: design and applications. Mini Rev. Med. Chem. 2:319–329 (2002) doi:10.2174/1389557023405873.

    Article  PubMed  CAS  Google Scholar 

  2. R. J. Debs, T. D. Heath, and D. Papahadjopoulos. Targeting of anti-Thy 1.1 monoclonal antibody conjugated liposomes in Thy 1.1 mice after intravenous administration. Biochim. Biophys. Acta. 901:183–190 (1987) doi:10.1016/0005-2736(87)90114-3.

    Article  PubMed  CAS  Google Scholar 

  3. I. Ahmad, M. Longenecker, J. Samuel, and T. M. Allen. Antibody-targeted delivery of doxorubicin entrapped in sterically stabilized liposomes can eradicate lung cancer in mice. Cancer Res. 53:1484–1488 (1993).

    PubMed  CAS  Google Scholar 

  4. Y. L. Tseng, R. L. Hong, M. H. Tao, and F. H. Chang. Sterically stabilized anti-idiotype immunoliposomes improve the therapeutic efficacy of doxorubicin in a murine B-cell lymphoma model. Int. J. Cancer. 80:723–730 (1999) doi:10.1002/(SICI)1097-0215(19990301)80:5<723::AID-IJC16>3.0.CO;2-L.

    Article  PubMed  CAS  Google Scholar 

  5. J. W. Park, K. Hong, D. B. Kirpotin, G. Colbern, R. Shalaby, J. Baselga, Y. Shao, U. B. Nielsen, J. D. Marks, D. Moore, D. Papahadjopoulos, and C. C. Benz. Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery. Clin. Cancer Res. 8:1172–1181 (2002).

    PubMed  CAS  Google Scholar 

  6. C. B. Hansen, G. Y. Kao, E. H. Moase, S. Zalipsky, and T. M. Allen. Attachment of antibodies to sterically stabilized liposomes: evaluation, comparison and optimization of coupling procedures. Biochim. Biophys. Acta. 1239:133–144 (1995) doi:10.1016/0005-2736(95)00138-S.

    Article  PubMed  Google Scholar 

  7. H. C. Loughrey, K. F. Wong, L. S. Choi, P. R. Cullis, and M. B. Bally. Protein-liposome conjugates with defined size distributions. Biochim. Biophys. Acta. 1028:73–81 (1990) doi:10.1016/0005-2736(90)90267-R.

    Article  PubMed  CAS  Google Scholar 

  8. T. O. Harasym, P. Tardi, S. A. Longman, S. M. Ansell, M. B. Bally, P. R. Cullis, and L. S. Choi. Poly(ethylense glycol)-modified phospholipids prevent aggregation during covalent conjugation of proteins to liposomes. Bioconjug. Chem. 6:187–194 (1995) doi:10.1021/bc00032a006.

    Article  PubMed  CAS  Google Scholar 

  9. G. Bendas, A. Krause, U. Bakowsky, J. Vogel, and U. Rothe. Targetability of novel immunoliposomes prepared by a new antibody conjugation technique. Int. J. Pharm. 181:79–93 (1999) doi:10.1016/S0378-5173(99)00002-2.

    Article  PubMed  CAS  Google Scholar 

  10. V. P. Torchilin, T. S. Levchenko, A. N. Lukyanov, B. A. Khaw, A. L. Klibanov, R. Rammohan, G. P. Samokhin, and K. R. Whiteman. p-Nitrophenylcarbonyl-PEG-PE-liposomes: fast and simple attachment of specific ligands, including monoclonal antibodies, to distal ends of PEG chains via p-nitrophenylcarbonyl groups. Biochim. Biophys. Acta. 1511:397–411 (2001) doi:10.1016/S0005-2728(01)00165-7.

    Article  PubMed  CAS  Google Scholar 

  11. T. M. Allen, E. Brandeis, C. B. Hansen, G. Y. Kao, and S. Zalipsky. A new strategy for attachment of antibodies to sterically stabilized liposomes resulting in efficient targeting to cancer cells. Biochim. Biophys. Acta. 1237:99–108 (1995) doi:10.1016/0005-2736(95)00085-H.

    Article  PubMed  Google Scholar 

  12. D. Kirpotin, J. W. Park, K. Hong, S. Zalipsky, W. L. Li, P. Carter, C. C. Benz, and D. Papahadjopoulos. Sterically stabilized anti-HER2 immunoliposomes: design and targeting to human breast cancer cells in vitro. Biochemistry. 36:66–75 (1997) doi:10.1021/bi962148u.

    Article  PubMed  CAS  Google Scholar 

  13. A. R. Nicholas, M. J. Scott, N. I. Kennedy, and M. N. Jones. Effect of grafted polyethylene glycol (PEG) on the size, encapsulation efficiency and permeability of vesicles. Biochim. Biophys. Acta. 1463:167–178 (2000) doi:10.1016/S0005-2736(99)00192-3.

    Article  PubMed  CAS  Google Scholar 

  14. J. N. Moreira, T. Ishida, R. Gaspar, and T. M. Allen. Use of the post-insertion technique to insert peptide ligands into pre-formed stealth liposomes with retention of binding activity and cytotoxicity. Pharm. Res. 19:265–269 (2002) doi:10.1023/A:1014434732752.

    Article  PubMed  CAS  Google Scholar 

  15. D. L. Iden, and T. M. Allen. In vitro and in vivo comparison of immunoliposomes made by conventional coupling techniques with those made by a new post-insertion approach. Biochim. Biophys. Acta. 1513:207–216 (2001) doi:10.1016/S0005-2736(01)00357-1.

    Article  PubMed  CAS  Google Scholar 

  16. T. Ishida, D. L. Iden, and T. M. Allen. A combinatorial approach to producing sterically stabilized (Stealth) immunoliposomal drugs. FEBS Lett. 460:129–133 (1999) doi:10.1016/S0014-5793(99)01320-4.

    Article  PubMed  CAS  Google Scholar 

  17. J. Takasaki, and S. M. Ansell. Micelles as intermediates in the preparation of protein-liposome conjugates. Bioconjugate Chem. 17:438–450 (2006) doi:10.1021/bc050051r.

    Article  CAS  Google Scholar 

  18. T. Steenpaß, A. Lung, and R. Schubert. Tresylated PEG-sterols for coupling of proteins to preformed plain or PEGylated liposomes. Biochim. Biophys. Acta. 1758:20–28 (2006) doi:10.1016/j.bbamem.2005.12.010.

    Article  PubMed  CAS  Google Scholar 

  19. A. J. Bradley, D. V. Devine, S. M. Ansell, J. Janzen, and D. E. Brooks. Inhibition of liposome-induced complement activation by incorporated poly(ethylene glycol)-lipids. Arch. Biochem. Biophys. 357:185–194 (1998) doi:10.1006/abbi.1998.0798.

    Article  PubMed  CAS  Google Scholar 

  20. T. Yuda, K. Maruyama, and M. Iwatsuru. Prolongation of liposome circulation time by various derivatives of polyethyleneglycols. Biol. Pharm. Bull. 19:1347–1351 (1996).

    PubMed  CAS  Google Scholar 

  21. A. Sachse, J. U. Leike, T. Schneider, S. E. Wagner, G. L. Rossling, W. Krause, and M. Brandl. Biodistribution and computed tomography blood-pool imaging properties of polyethylene glycol-coated iopromide-carrying liposomes. Invest. Radiol. 32:44–50 (1997) doi:10.1097/00004424-199701000-00007.

    Article  PubMed  CAS  Google Scholar 

  22. X. Pan, G. Wu, W. Yang, R. F. Barth, W. Tjarks, and R. J. Lee. Synthesis of cetuximab-immunoliposomes via a cholesterol-based membrane anchor for targeting of EGFR. Bioconjug. Chemi. 18:101–108 (2007) doi:10.1021/bc060174r.

    Article  CAS  Google Scholar 

  23. G. Pagnan, P. G. Montaldo, F. Pastorino, L. Raffaghello, M. Kirchmeier, T. M. Allen, and M. Ponzoni. GD2-mediated melanoma cell targeting and cytotoxicity of liposome-entrapped fenretinide. Int. J. Cancer. 81:268–274 (1999) doi:10.1002/(SICI)1097-0215(19990412)81:2<268::AID-IJC17>3.0.CO;2-1.

    Article  PubMed  CAS  Google Scholar 

  24. S. Ohta, S. Igarashi, A. Honda, S. Sato, and N. Hanai. Cytotoxicity of adriamycin-containing immunoliposomes targeted with anti-ganglioside monoclonal antibodies. Anticancer Res. 13:331–336 (1993).

    PubMed  CAS  Google Scholar 

  25. F. Pastorino, C. Brignole, D. Marimpietri, G. Pagnan, A. Morando, D. Ribatti, S. C. Semple, C. Gambini, T. M. Allen, and M. Ponzoni. Targeted liposomal c-myc antisense oligodeoxynucleotides induce apoptosis and inhibit tumor growth and metastases in human melanoma models. Clin. Cancer Res. 9:4595–4605 (2003).

    PubMed  CAS  Google Scholar 

  26. K. Mujoo, D. A. Cheresh, H. M. Yang, and R. A. Reisfeld. Disialoganglioside GD2 on human neuroblastoma cells: target antigen for monoclonal antibody-mediated cytolysis and suppression of tumor growth. Cancer Res. 47:1098–1104 (1987).

    PubMed  CAS  Google Scholar 

  27. E. Jouanneau, L. Alberti, M. Nejjari, I. Treilleux, I. Vilgrain, A. Duc, V. Combaret, M. Favrot, P. Leboulch, and T. Bachelot. Lack of antitumor activity of recombinant endostatin in a human neuroblastoma xenograft model. J. Neurooncol. 51:11–18 (2001) doi:10.1023/A:1006420200626.

    Article  PubMed  CAS  Google Scholar 

  28. M. M. Uttenreuther-Fischer, C. S. Huang, and A. L. Yu. Pharmacokinetics of human-mouse chimeric anti-GD2 mAb ch14.18 in a phase I trial in neuroblastoma patients. Cancer Immunol. Immunother. 41:331–338 (1995) doi:10.1007/BF01526552.

    Article  PubMed  CAS  Google Scholar 

  29. L. S. Metelitsa, S. D. Gillies, M. Super, H. Shimada, C. P. Reynolds, and R. C. Seeger. Antidisialoganglioside/granulocyte macrophage-colony-stimulating factor fusion protein facilitates neutrophil antibody-dependent cellular cytotoxicity and depends on FcgammaRII (CD32) and Mac-1 (CD11b/CD18) for enhanced effector cell adhesion and azurophil granule exocytosis. Blood. 99:4166–4173 (2002) doi:10.1182/blood.V99.11.4166.

    Article  PubMed  CAS  Google Scholar 

  30. R. Schubert, W. Hartwig, K.-H. Schmidt, and H. J. Roth. Loading of preformed liposomes with high entrapping efficiency by detergent-induced formation of transient membrane holes. Chem. Phys. Lipids. 58:121–129 (1991) doi:10.1016/0009-3084(91)90118-U.

    Article  CAS  Google Scholar 

  31. K. Tajima, and N. L. Gershfeld. Equilibrium studies of lecithin-cholesterol interactions. II. Phase relations in surface films: analysis of the “condensing” effect of cholesterol. Biophys. J. 22:489–500 (1978).

    Article  PubMed  CAS  Google Scholar 

  32. I. D. Bianco, J. J. Daniele, C. Delgado, D. Fisher, G. E. Francis, and G. D. Fidelio. Coupling reaction and properties of poly(ethylene glycol)-linked phospholipases A2. Biosci. Biotechnol. Biochem. 66:722–729 (2002) doi:10.1271/bbb.66.722.

    Article  PubMed  CAS  Google Scholar 

  33. C. Delgado, J. N. Patel, G. E. Francis, and D. Fisher. Coupling of poly(ethylene glycol) to albumin under very mild conditions by activation with tresyl chloride: characterization of the conjugate by partitioning in aqueous two-phase systems. Biotechnol. Appl. Biochem. 12:119–128 (1990).

    PubMed  CAS  Google Scholar 

  34. M. J. Roberts, M. D. Bentley, and J. M. Harris. Chemistry for peptide and protein PEGylation. Adv. Drug Deliv. Rev. 54:459–476 (2002) doi:10.1016/S0169-409X(02)00022-4.

    Article  PubMed  CAS  Google Scholar 

  35. S. Mirzadeh, M. W. Brechbiel, R. W. Atcher, and O. A. Gansow. Radiometal labeling of immunoproteins: covalent linkage of 2-(4-isothiocyanatobenzyl)diethylenetriaminepentaacetic acid ligands to immunoglobulin. Bioconj. Chem. 1:59–65 (1990) doi:10.1021/bc00001a007.

    Article  CAS  Google Scholar 

  36. P. Tardi, M. B. Bally, and T. O. Harasym. Clearance properties of liposomes involving conjugated proteins for targeting. Adv. Drug Deliv. Rev. 32:99–118 (1998) doi:10.1016/S0169-409X(97)00134-8.

    Article  PubMed  Google Scholar 

  37. T. M. Rana, and C. F. Meares. N-terminal modification of immunoglobulin polypeptide chains tagged with isothiocyanato chelates. Bioconj. Chem. 1:357–362 (1990) doi:10.1021/bc00005a010.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

These studies were financially supported by a grant from the Mildred Scheel Foundation. The authors would like to thank Rupert Handgretinger and Stephen D Gillies for providing the antibodies and Marie Follo for proof-reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felicitas Lewrick.

Additional information

M. Gantert and F. Lewrick contributed equally to this publication.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gantert, M., Lewrick, F., Adrian, J.E. et al. Receptor-Specific Targeting with Liposomes In Vitro Based on Sterol-PEG1300 Anchors. Pharm Res 26, 529–538 (2009). https://doi.org/10.1007/s11095-008-9768-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9768-z

KEY WORDS

Navigation