Skip to main content
Log in

Colloidal Structures in Media Simulating Intestinal Fed State Conditions with and Without Lipolysis Products

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To study the ultrastructure of biorelevant media and digestion products of self-nanoemulsifying drug delivery system (SNEDDS) at high level BS/PL conditions.

Methods

Cryogenic transmission electron microscopy (Cryo-TEM) was employed to visualize the colloid structures in the biorelevant media and lipolytic products generated during hydrolysis of a SNEDDS formulation. Their electrical properties were investigated by measuring their ζ-potential values.

Results

In the biorelevant media, vesicles (either unilamellar or multilamellar) and bilayer fragments are visualized. Occasionally, vesicles with an internal deformed structure are recognized, suggesting surface tension or uneven lateral stress. Visualization studies of the intermediate colloidal phases produced during digestion of a SNEDDS using the in vitro lipolysis model revealed the formation of similar structures as previously reported. The ζ-potential of the media was negatively charged and decreased from −23 to −35 mV with increasing surfactant/lipid load. Lower ζ-potential values (−16 mV) obtained for the structures formed during the lipid hydrolysis of the SNEDDS were probably due to the presence of calcium, which shields the surface, thereby reducing the charge.

Conclusions

The diversity of these vesicles in terms of size, lamellarity, and internal organization advocate their important role during lipid digestion in the gastrointestinal milieu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T. R. Bates, M. Gibaldi, and J. L. Kanig. Solubilising properties of bile salt solutions. II. Effect of inorganic electrolyte, lipids, and a mixed bile salt system on solubilisation of glutethimide, griseofulvin, and hexestrol. J. Pharm. Sci. 55:901–906 (1966) doi:10.1002/jps.2600550906.

    Article  PubMed  CAS  Google Scholar 

  2. T. R. Bates, S. L. Lin, and M. Gibaldi. Solubilisation and rate of dissolution of drugs in the presence of physiologic concentrations of lysolecithin. J. Pharm. Sci. 56:1492–1495 (1967) doi:10.1002/jps.2600561123.

    Article  PubMed  CAS  Google Scholar 

  3. L. Martis, N. A. Hall, and A. L. Thakkar. Micelle formation and testosterone solubilisation by sodium glycocholate. J. Pharm. Sci. 61:1757–1761 (1972) doi:10.1002/jps.2600611113.

    Article  PubMed  CAS  Google Scholar 

  4. M. Rosoff, and A. T. M. Serajuddin. Solubilisation of diazepam in bile-salts and in sodium cholate–lecithin–water phases. Int. J. Pharm. 6:137–146 (1980) doi:10.1016/0378-5173(80)90086-1.

    Article  CAS  Google Scholar 

  5. M. A. Kassem, A. G. Mattha, A. E. M. Elnimr, and S. M. Omar. Study of the influence of sodium taurocholate (stc) and sodium glycocholate (sgc) on the mass-transfer of certain drugs—digoxin. Int. J. Pharm. 12:1–9 (1982) doi:10.1016/0378-5173(82)90128-4.

    Article  CAS  Google Scholar 

  6. A. T. Serajuddin, P. C. Sheen, D. Mufson, D. F. Bernstein, and M. A. Augustine. Physicochemical basis of increased bioavailability of a poorly water-soluble drug following oral administration as organic solutions. J. Pharm. Sci. 77:325–329 (1988) doi:10.1002/jps.2600770409.

    Article  PubMed  CAS  Google Scholar 

  7. M. Armand, P. Borel, B. Pasquier, C. Dubois, M. Senft, M. Andre, J. Peyrot, J. Salducci, and D. Lairon. Physicochemical characteristics of emulsions during fat digestion in human stomach and duodenum. Am. J. Physiol. 271:G172–G183 (1996).

    PubMed  CAS  Google Scholar 

  8. A. Tangerman, A. van Schaik, and E. W. van der Hoek. Analysis of conjugated and unconjugated bile acids in serum and jejunal fluid of normal subjects. Clin. Chim. Acta. 159:123–132 (1986) doi:10.1016/0009-8981(86)90044-6.

    Article  PubMed  CAS  Google Scholar 

  9. E. Galia, E. Nicolaides, D. Hörter, R. Löbenberg, C. Reppas, and J. B. Dressman. Evaluation of various dissolution media for predicting in vivo performance of class I and II drugs. Pharm. Res. 15:698–705 (1998) doi:10.1023/A:1011910801212.

    Article  PubMed  CAS  Google Scholar 

  10. B. L. Pedersen, A. Mullertz, H. Brondsted, and H. G. Christensen. A comparison of the solubility of danazol in human and simulated gastrointestinal fluids. Pharm. Res. 7:891–894 (2000) doi:10.1023/A:1007576713216.

    Article  Google Scholar 

  11. S. D. Ladas, P. E. Isaacs, G. M. Murphy, and G. E. Sladen. Comparison of the effects of medium and long chain triglyceride containing liquid meals on gall bladder and small intestinal function in normal man. Gut. 25:405–411 (1984) doi:10.1136/gut.25.4.405.

    Article  PubMed  CAS  Google Scholar 

  12. E. M. Persson, A. S. Gustafsson, A. S. Carlsson, R. G. Nilsson, L. Knutson, P. Forsell, G. Hanisch, H. Lennernas, and B. Abrahamsson. The effects of food on the dissolution of poorly soluble drugs in human and in model small intestinal fluids. Pharm. Res. 12:2141–2151 (2005) doi:10.1007/s11095-005-8192-x.

    Article  CAS  Google Scholar 

  13. J. E. Staggers, O. Hernell, R. J. Stafford, and M. C. Carey. Physical–chemical behaviour of dietary and biliary lipids during intestinal digestion and absorption. 1. Phase behaviour and aggregation states of model lipids systems patterned after aqueous duodenal contents of healthy adult human beings. Biochemistry. 29:2028–2040 (1990) doi:10.1021/bi00460a011.

    Article  PubMed  CAS  Google Scholar 

  14. O. Hernell, J. E. Staggers, and M. C. Carey. Physicochemical behaviour of dietary and biliary lipids during intestinal digestion and absorption. 2. Phase behaviour and aggregation states of luminal lipids during duodenal fat digestion in health adult human beings. Biochemistry. 29:2041–2056 (1990) doi:10.1021/bi00460a012.

    Article  PubMed  CAS  Google Scholar 

  15. S. D. Mithani, V. Bakatselou, C. N. TenHoor, and J. B. Dressman. Estimation of the increase in solubility of drugs as a function of bile salt concentration. Pharm. Res. 13:163–167 (1996) doi:10.1023/A:1016062224568.

    Article  PubMed  CAS  Google Scholar 

  16. T. S. Wiedmann, W. Liang, and L. Kamel. Solubilisation of drugs by physiological mixtures of bile salts. Pharm. Res. 19:1203–1208 (2002) doi:10.1023/A:1019858428449.

    Article  PubMed  CAS  Google Scholar 

  17. T. S. Wiedmann, and L. Kamel. Examination of the solubilisation of drugs by bile salt micelles. J. Pharm. Sci. 91:1743–1764 (2002) doi:10.1002/jps.10158.

    Article  PubMed  CAS  Google Scholar 

  18. D. Ilardia-Arana, H. G. Kristensen, and A. Mullertz. Biorelevant dissolution media: aggregation of amphiphiles and solubility of estradiol. J. Pharm. Sci. 95:248–255 (2006) doi:10.1002/jps.20494.

    Article  PubMed  CAS  Google Scholar 

  19. G. A. Kossena, B. J. Boyd, C. J. H. Porter, and W. N. Charman. Separation and characterization of the colloidal phases produced on digestion of common formulation lipids and assessment of their impact on the apparent solubility of selected poorly water-soluble drugs. J. Pharm. Sci. 92:634–648 (2003) doi:10.1002/jps.10329.

    Article  PubMed  CAS  Google Scholar 

  20. G. A. Kossena, W. N. Charman, B. J. Boyd, and C. J. H. Porter. Influence of the intermediate digestion phases of common formulation lipids on the absorption of a poorly water-soluble drug. J. Pharm. Sci. 94:481–492 (2005) doi:10.1002/jps.20260.

    Article  PubMed  CAS  Google Scholar 

  21. K. J. MacGregor, J. K. Embleton, J. E. Lacy, A. E. Perry, L. J. Solomon, H. Seager, and C. W. Pouton. Influence of lipolysis on drug absorption from the gastro-intestinal tract. Adv. Drug Deliv. Rev. 25:33–46 (1997) doi:10.1016/S0169-409X(96)00489-9.

    Article  CAS  Google Scholar 

  22. P. Vinson, Y. Talmon, and A. Walter. Vesicle-micelle transition of phosphatidylcholine and octyl glucoside elucidated by cryo-transmission electron microscopy. Biophys. J. 56:669–681 (1989).

    Article  PubMed  CAS  Google Scholar 

  23. A. Walter, P. K. Vinson, A. Kaplun, and Y. Talmon. Intermediate structures in the cholate-phosphatidylcholine vesicle–micelle transition. Biophys. J. 60:1315–1325 (1991).

    Article  CAS  PubMed  Google Scholar 

  24. J. R. Bellare, H. T. Davis, L. E. Scriven, and Y. Talmon. Controlled environment vitrification system. An improved sample preparation technique. J. Electron Microsc. Tech. 10:87–111 (1988) doi:10.1002/jemt.1060100111.

    Article  PubMed  CAS  Google Scholar 

  25. J. Dubochet, M. Adrian, J. Chang, J. C. Homo, J. Lepault, A. W. McDowell, and P. Schultz. Cryo-electron microscopy of vitrified specimens. Q. Rev. Biophys. 21:129–228 (1988).

    PubMed  CAS  Google Scholar 

  26. N. H. Zangenberg, A. Müllertz, H. G. Kristensen, and L. Hovgaard. A dynamic in vitro lipolysis model. I. Controlling the rate of lipolysis by continuous addition of calcium. Eur. J. Pharm. Sci. 14:115–122 (2001) doi:10.1016/S0928-0987(01)00169-5.

    Article  PubMed  CAS  Google Scholar 

  27. N. H. Zangenberg, A. Müllertz, H. G. Kristensen, and L. Hovgaard. A dynamic in vitro lipolysis model. II. Evaluation of the model. Eur. J. Pharm. Sci. 14:237–244 (2001) doi:10.1016/S0928-0987(01)00182-8.

    Article  PubMed  CAS  Google Scholar 

  28. J. S. Patton, and M. C. Carey. Watching fat digestion. Science. 204:145–148 (1979) doi:10.1126/science.432636.

    Article  PubMed  CAS  Google Scholar 

  29. J. S. Patton, R. D. Vetter, M. Hamosh, B. Borgstrom, M. Lindstrom, and M. C. Carey. The light microscopy of triglyceride digestion. Food Microstruct. 4:29–41 (1985).

    CAS  Google Scholar 

  30. M. W. Rigler, and J. S. Patton. The production of liquid crystalline product by pancreatic lipase in the absence of bile salts. Biochim. Biophys. Acta. 751:444–454 (1983).

    PubMed  CAS  Google Scholar 

  31. M. W. Rigler, R. E. Honkanen, and J. S. Patton. Visualization by freeze fracture, in vitro and in vivo, of the products of fat digestion. J. Lipid Res. 8:836–857 (1986).

    Google Scholar 

  32. D. G. Fatouros, B. Bergenstahl, and A. Mullertz. Morphological observations on a lipid based drug delivery system during in vitro digestion. Eur. J. Pharm. Sci. 31:85–94 (2007) doi:10.1016/j.ejps.2007.02.009.

    Article  PubMed  CAS  Google Scholar 

  33. F. S. Nielsen, E. Gibault, H. Ljusberg-Wahren, L. Arleth, J. S. Pedersen, and A. Müllertz. Characterization of prototype self-nanoemulsifying formulations of lipophilic compounds. J. Pharm. Sci. 96:876–892 (2007) doi:10.1002/jps.20673.

    Article  PubMed  CAS  Google Scholar 

  34. Y. Gargouri, H. Moreau, and R. Verger. Gastric lipases: Biochemical and physiological studies. Biochim. Biophys. Acta. 1006:255–271 (1989).

    PubMed  CAS  Google Scholar 

  35. J. B. Dressman, R. R. Berardi, L. C. Dermentzoglou, T. L. Russell, S. P. Schmaltz, J. L. Barnett, and K. M. Jarvenpaa. Upper gastrointestinal (GI) pH in young, healthy men and women. Pharm. Res. 7:756–761 (1990) doi:10.1023/A:1015827908309.

    Article  PubMed  CAS  Google Scholar 

  36. F. Carriere, J. A. Barrowman, R. Verger, and R. Laugier. Secretion and contribution to lipolysis of gastric and pancreatic lipases during a test meal in humans. Gastroenterology. 105:876–888 (1993).

    PubMed  CAS  Google Scholar 

  37. USP 26, The United States Pharmacopoeia/The National Formulary, (USP 26/NF 21). United States Pharmacopoeia Convection, Inc., Rockville (2003).

  38. M. Wickham, M. Garrood, J. Leney, P. D. G. Wilson, and A. Fillery-Travis. Modification of phospholipids by bile salt: Effect on pancreatic lipase activity. J. Lipid Res. 39:623–632 (1998).

    PubMed  CAS  Google Scholar 

  39. D. Paolino, C. A. Ventura, S. Nistico, G. Puglisi, and M. Fresta. Lecithin microemulsions for the topical administration of ketoprofen: Percutaneous adsorption through human skin and in vivo human skin tolerability. Int. J. Pharm. 244:21–31 (2002) doi:10.1016/S0378-5173(02)00295-8.

    Article  PubMed  CAS  Google Scholar 

  40. M. N. Jones. he surface properties of phospholipid liposome systems and their characterization. Adv. Colloid Interface Sci. 54:93–128 (1995) doi:10.1016/0001-8686(94)00223-Y.

    Article  PubMed  CAS  Google Scholar 

  41. S. McLaughlin, N. Mulrine, T. Gresalfi, G. Vaio, and A. McLaughlin. Adsorption of divalent cations to bilayer membranes containing phosphatidylserine. J. Gen. Physiol. 77:445–473 (1981) doi:10.1085/jgp.77.4.445.

    Article  PubMed  CAS  Google Scholar 

  42. R. Schubert, and K. H. Schmidt. Structural changes in vesicle membranes and mixed micelles of various lipid compositions after binding of different bile salts. Biochemistry. 27:8787–8794 (1988) doi:10.1021/bi00424a015.

    Article  PubMed  CAS  Google Scholar 

  43. M. T. Paternostre, M. Roux, and J. L. Rigaud. Mechanisms of membrane protein insertion into liposomes during reconstitution procedures involving the use of detergents. 1. Solubilisation of large unilamellar liposomes (prepared by reverse-phase evaporation) by triton X-100, octyl glucoside, and sodium cholate. Biochemistry. 27:2668–2677 (1988) doi:10.1021/bi00408a006.

    Article  PubMed  CAS  Google Scholar 

  44. M. Kokkona, P. Kallinteri, D. Fatouros, and S. G. Antimisiaris. Stability of SUV liposomes in the presence of cholate salts and pancreatic lipases: effect of lipid composition. Eur. J. Pharm. Sci. 9:245–252 (2000) doi:10.1016/S0928-0987(99)00064-0.

    Article  PubMed  CAS  Google Scholar 

  45. D. D. Lasic, R. Joannic, B. C. Keller, P. M. Frederik, and L. Auvrey. Spontaneous vesiculation. Adv. Colloid Interface Sci. 89–90:337–349 (2001) doi:10.1016/S0001-8686(00)00067-1.

    Article  PubMed  Google Scholar 

  46. R. Waninge, T. Nylander, M. Paulsson, and B. Bergenstahl. Milk membrane lipid vesicle structures studied with Cryo-TEM. Colloids Surf. B Biointerf. 31:257–264 (2003) doi:10.1016/S0927-7765(03)00145-0.

    Article  CAS  Google Scholar 

  47. W. R. Hargreaves, and D. W. Deamer. Liposomes from ionic, single-chain amphiphiles. Biochemistry. 17:3759–3768 (1978)doi:10.1021/bi00611a014.

    Article  PubMed  CAS  Google Scholar 

  48. J. Borne, T. Nylander, and A. Khan. Effect of lipase on monoolein-based cubic phase dispersion (cubosomes) and vesicles. J. Phys. Chem. B. 106:10492–10500 (2002) doi:10.1021/jp021023y.

    Article  CAS  Google Scholar 

  49. R. Waninge, E. Kalda, M. Paulsson, T. Nylander, and B. Bergenstahl. Cryo-TEM of isolated milk fat globule membrane structures in cream. Phys. Chem. Chem. Phys. 6:1518–1523 (2004) doi:10.1039/b314613h.

    Article  CAS  Google Scholar 

  50. J. Gustafsson, T. Nylander, M. Almgren, and H. Ljusberg-Wahren. Phase behaviour and aggregate structure in aqueous mixtures of sodium cholate and glycerol monooleate. J. Coll. Inter. Sci. 211:326–335 (1999) doi:10.1006/jcis.1998.5996.

    Article  CAS  Google Scholar 

  51. T. H. Calissen, and Y. Talmon. Direct imaging by cryo-TEM shows membrane break-up by phospholipase A2 enzymatic activity. Biochemistry. 37:10987–10993 (1998) doi:10.1021/bi980255d.

    Article  Google Scholar 

  52. K. J. MacGregor, J. K. Embleton, J. E. Lacy, E. A. Perry, L. J. Solomon, H. Seager, and C. W. Pouton. Influence of lipolysis on drug absorption from the gastro-intestinal tract. Adv. Drug Deliv. Rev. 1:33–46 (1997) doi:10.1016/S0169-409X(96)00489-9.

    Article  Google Scholar 

  53. J. S. Patton, and M. C. Carey. Inhibition of human pancreatic lipase-colipase activity by mixed bile salt-phospholipid micelles. Am. J. Physiol. 241:G328–G336 (1981).

    PubMed  CAS  Google Scholar 

  54. J. Jantratid, N. Janssen, C. Reppas, and J. B. Dresmman. Dissolution media simulating conditions in the proximal human gastrointestinal tract: An update. Pharm. Res. 25:1663–1676 (2008) doi:10.1007/s11095-008-9569-4.

    Article  PubMed  CAS  Google Scholar 

  55. S. Clarysse, J. Tack, F. Lammert, G. Duchateau, C. Reppas, and P. Augustijns. Postprandial evolution in composition and characteristics of human duodenal fluids in different nutritional states. J. Pharm. Sci. (2008) doi:10.1002/jps.21502.

Download references

Acknowledgements

The Cryo-microscopy was performed at the Biomicroscopy unit at the Centre of Chemistry and Chemical Engineering at Lund University. The authors are grateful to Mrs. Gunnel Karlsson for her skilful assistance with the Cryo-TEM instrument. This work was financially supported from Drug Research Academy (DRA), The Danish University of Pharmaceutical Sciences. Mrs IW was an IASTE student at the Danish University of Pharmaceutical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios G. Fatouros.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fatouros, D.G., Walrand, I., Bergenstahl, B. et al. Colloidal Structures in Media Simulating Intestinal Fed State Conditions with and Without Lipolysis Products. Pharm Res 26, 361–374 (2009). https://doi.org/10.1007/s11095-008-9750-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9750-9

KEY WORDS

Navigation