Skip to main content
Log in

Conversion of Nanosuspensions into Dry Powders by Spray Drying: A Case Study

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Drying of nanosuspensions can cause destabilization of the particles, leading to irreversible aggregation. In order to prepare an effective solid dosage form for a nanosuspension, it is imperative that the spray-dried nanoparticles should go back to their original particle size when reconstituted in an aqueous system. This case study examines impact of various formulation and processing parameters on redispersibility of the spray dried nanoparticles.

Methods

Nanosuspensions were prepared using the microprecipitation–homogenization process. Spray drying of nanosuspensions was achieved using a lab-scale Buchi spray dryer.

Results

Formulation components appeared to have the most significant impact on redispersibility of spray dried particles. Absence of surface charge led to particles that could not be redispersed. On the other hand, charged particles stabilized with an appropriate sugar led to spray dried powders that were flowable and easily redispersible. Dissolution testing showed the presence of two phases—a lag phase that represented dispersion of the loose aggregates, and dissolution of the dispersed nanoparticles.

Conclusions

Nanosuspensions of a poorly soluble drug could be spray dried to obtain flowable powders that could be easily redispersed. These optimized powders also showed significantly improved dissolution rates as compared to the micronized drug, or unoptimized nanosuspensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. K. R. Horspool, and C. A. Lipinski. Advancing new drug delivery concepts to gain the lead. Drug Deliv. Technol. 3:34–46 (2003).

    CAS  Google Scholar 

  2. M. Hariharan, L. D. Ganorkar, G. E. Amidon, E. Cavallo, P. Gatti, M. Hageman, I. Choo, J. L. Miller, and M. Shah. Reducing the time to develop and manufacture formulations for first oral dose in humans. Pharm. Tech. 27:68–84 (2003).

    CAS  Google Scholar 

  3. M. V. Chaubal. Application of drug delivery technologies in lead candidate selection and optimization. Drug Discov. Today. 9(14):603–609 (2004).

    Article  PubMed  CAS  Google Scholar 

  4. J. E. Kipp. The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. Int. J. Pharm. 284(1–2):109–22 (2004).

    Article  PubMed  CAS  Google Scholar 

  5. C. Schmidt, and R. Bodmeier. Incorporation of polymeric nanoparticles into solid dosage forms. J. Controlled Release. 57:115–125 (1999).

    Article  CAS  Google Scholar 

  6. W. Abdelwahed, G. Degobert, S. Stainmesse, and H. Fessi. Freeze-drying of nanoparticles: formulation, process and storage considerations. Adv. Drug. Deliv. Rev. 58(15):1688–713 (2006).

    Article  PubMed  CAS  Google Scholar 

  7. S. Hirsjarvi, L. Peltonen, L. Kainu, and J. Hirvonen. Freeze-drying of low molecular weight poly(l-lactic acid) nanoparticles: effect of cryo- and lyoprotectants. J. Nanosci. Nanotechnol. 6(9–10):3110–3117 (2006).

    Article  PubMed  CAS  Google Scholar 

  8. A. M. Layre, P. Couvreur, J. Richard, D. Requier, N. Eddine Ghermani, and R. Gref. Freeze-drying of composite core-shell nanoparticles. Drug. Dev. Ind. Pharm. 32(7):839–846 (2006).

    Article  PubMed  CAS  Google Scholar 

  9. W. Abdelwahed, G. Degobert, and H. Fessi. Investigation of nanocapsules stabilization by amorphous excipients during freeze-drying and storage. Eur. J. Pharm. Biopharm. 63(2):87–94 (2006).

    Article  PubMed  CAS  Google Scholar 

  10. J. Lee. Drug nano- and microparticles processed into solid dosage forms: physical properties. J. Pharm. Sci. 92(10):2057–2068 (2003).

    Article  PubMed  CAS  Google Scholar 

  11. C. Freitas, and R. H. Muller. Spray drying of solid lipid nanoparticles (SLN TM). Eur. J. Pharm. Biopharm. 46(2):145–151 (1998).

    Article  PubMed  CAS  Google Scholar 

  12. S. X. Yin, M. Franchini, J. Chen, A. Hsieh, S. Jen, T. Lee, M. Hussain, and R. Smith. Bioavailability enhancement of a COX-2 inhibitor, BMS-347070, from a nanocrystalline dispersion prepared by spray drying. J. Pharm. Sci. 94(7):1598–1607 (2005).

    Article  PubMed  CAS  Google Scholar 

  13. R. Vehring. Pharmaceutical particle engineering via spray drying. Pharm. Res. 25(5):999–1022 (2008).

    Article  PubMed  CAS  Google Scholar 

  14. P. Johansen, H. P. Merkle, and B. Gander. Technological considerations related to the up-scaling of protein microencapsulation by spray-drying. Eur. J. Pharm. Biopharm. 50(3):413–417 (2000).

    Article  PubMed  CAS  Google Scholar 

  15. B. Rabinow, J. Kipp, P. Papadopoulos, J. Wong, J. Glosson, J. Gass, C. S. Sun, T. Wielgos, R. White, C. Cook, K. Barker, and K. Wood. Itraconazole IV nanosuspension enhances efficacy through altered pharmacokinetics in the rat. Int. J. Pharm. 339(1–2):251–260 (2007).

    Article  PubMed  CAS  Google Scholar 

  16. B. E. Rabinow. Nanosuspensions in drug delivery. Nat. Rev. Drug. Discov. 3(9):785–796 (2004).

    Article  PubMed  CAS  Google Scholar 

  17. M. T. Crisp, C. J. Tucker, T. L. Rogers, R. O. Williams 3rd, and K. P. Johnston. Turbidimetric measurement and prediction of dissolution rates of poorly soluble drug nanocrystals. J. Control. Release. 117:351–359 (2007).

    Article  PubMed  CAS  Google Scholar 

  18. S. N. Pace, G. W. Pace, I. Parikh, and A. K. Mishra. Novel injectable formulations of insoluble drugs. Pharm. Technol. 23:116–134 (1999).

    CAS  Google Scholar 

  19. F. Iskandar, L. Gradon, and K. Okuyama. Control of the morphology of nanostructured particles prepared by the spray drying of a nanoparticle sol. J. Colloid Interface Sci. 265(2):296–303 (2003).

    Article  PubMed  CAS  Google Scholar 

  20. D. Lide. CRC Handbook of Chemistry and Physics. 88th Edition. Informa, NY, 2007.

    Google Scholar 

  21. L. Kervinen, and J. Yliruusi. Modelling S-shaped dissolution curves. Int. J. Pharm. 92(1–3):115–122 (1993).

    Article  CAS  Google Scholar 

  22. A. Dokoumetzidis, V. Papadopoulou, and P. Macheras. Analysis of dissolution data using modified versions of Noyes–Whitney equation and the Weibull function. Pharm Res. 23(2):256–261 (2006).

    PubMed  CAS  Google Scholar 

  23. B. Van Eerdenbrugh, L. Froyen, J. A. Martens, N. Blaton, P. Augustijns, M. Brewster, and G. Van den Mooter. Characterization of physico-chemical properties and pharmaceutical performance of sucrose co-freeze-dried solid nanoparticulate powders of the anti-HIV agent loviride prepared by media milling. Int. J. Pharm. 338(1–2):198–206 (2007).

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Sabine Graham, Baxter Healthcare for zeta potential measurements and Drs. Jane Werling and Sarah Lee for review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahesh V. Chaubal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaubal, M.V., Popescu, C. Conversion of Nanosuspensions into Dry Powders by Spray Drying: A Case Study. Pharm Res 25, 2302–2308 (2008). https://doi.org/10.1007/s11095-008-9625-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9625-0

KEY WORDS

Navigation