Skip to main content
Log in

Designing 3D Photopolymer Hydrogels to Regulate Biomechanical Cues and Tissue Growth for Cartilage Tissue Engineering

  • Original Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Synthetic hydrogels fabricated from photopolymerization are attractive for tissue engineering for their controlled macroscopic properties, the ability to incorporate biological functionalities, and cell encapsulation. The goal of the present study was to exploit the attractive features of synthetic hydrogels to elucidate the role of gel structure and chemistry in regulating biomechanical cues.

Methods

Cartilage cells were encapsulated in poly(ethylene glycol) (PEG) hydrogels with different crosslinking densities. Cellular deformation was examined as a function of gel crosslinking. The effects of continuous versus intermittent dynamic loading regimens were examined. RGD, a cell adhesion peptide, was incorporated into PEG gels and subjected to mechanical loading. Chondrocyte morphology and activity was assessed by anabolic and catabolic ECM gene expression and matrix production by collagen and glycosaminoglycan production.

Results

Cell deformation was mediated by gel crosslinking. In the absence of loading, anabolic activity was moderately upregulated while catabolic activity was significantly inhibited regardless of gel crosslinking. Dynamic loading enhanced anabolic activities, but continuous loading inhibited catabolic activity, while intermittent loading stimulated catabolic activity. RGD acted as a mechanoreceptor to influence tissue deposition.

Conclusions

We demonstrate the ability to regulate biomechanical cues through manipulations in the gel structure and chemistry and cartilage tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. J. Bryant, and K. S. Anseth. Hydrogel properties influence ecm production by chondrocyte photoencapsulated in poly(ethylene glycol) hydrogels. J. Biomed. Mater. Res. 59:63–72 (2002).

    Article  PubMed  CAS  Google Scholar 

  2. S. J. Bryant, C. R. Nuttelman, and K. S. Anseth. Cytocompatibility of ultraviolet and visible light photoinitiating systems on cultured nih/3t3 fibroblasts in vitro. J. Biomater. Sci. Polym. Ed. 11:439–457 (2000).

    Article  PubMed  CAS  Google Scholar 

  3. J. Elisseeff, K. Anseth, D. Sims, W. McIntosh, M. Randolph, and R. Langer. Transdermal photopolymerization for minimally invasive implantation. Proc. Natl. Acad. Sci. U. S. A. 96:3104–3107 (1999).

    Article  PubMed  CAS  Google Scholar 

  4. J. A. Burdick, M. N. Mason, A. D. Hinman, K. Thorne, and K. S. Anseth. Delivery of osteoinductive growth factors from degradable peg hydrogels influences osteoblast differentiation and mineralization. J. Control. Release. 83:53–63 (2002).

    Article  PubMed  CAS  Google Scholar 

  5. A. S. Sawhney, C. P. Pathak, and J. A. Hubbell. Bioerodible hydrogels based on photopolymerized poly(ethylene glycol)-co-poly(alpha-hydroxy acid) diacrylate macromers. Macromolecules. 26:581–587 (1993).

    Article  CAS  Google Scholar 

  6. A. T. Metters, K. S. Anseth, and C. N. Bowman. Fundamental studies of a novel, biodegradable peg-b-pla hydrogel. Polymer. 41:3993–4004 (2000).

    Article  CAS  Google Scholar 

  7. K. A. Smeds, and M. W. Grinstaff. Photocrosslinkable polysaccharides for in situ hydrogel formation. J. Biomed. Mater. Res. 54:115–121 (2001).

    Article  PubMed  CAS  Google Scholar 

  8. P. Martens, and K. S. Anseth. Characterization of hydrogels formed from acrylate modified poly(vinyl alcohol) macromers. Polymer. 41:7715–7722 (2000).

    Article  CAS  Google Scholar 

  9. J. Baier Leach, K. A. Bivens, C. W. Patrick, and C. E. Schmidt. Photocrosslinked hyaluronic acid hydrogels: Natural, biodegradable tissue engineering scaffolds. Biotechnol. Bioeng. 82:578–589 (2003).

    Article  PubMed  Google Scholar 

  10. S. J. Bryant, K. A. Davis-Areharet, N. Luo, R. K. Shoemaker, J. A. Arthur, and K. S. Anseth. Synthesis and characterization of photopolymerized multifunctional hydrogels: Water-soluble poly(vinyl alcohol) and chondroitin sulfate macromers for chondrocyte encapsulation. Macromolecules. 37:6726–6733 (2004).

    Article  CAS  Google Scholar 

  11. D. A. Wang, C. G. Williams, Q. A. Li, B. Sharma, and J. H. Elisseeff. Synthesis and characterization of a novel degradable phosphate-containing hydrogel. Biomaterials. 24:3969–3980 (2003).

    Article  PubMed  CAS  Google Scholar 

  12. Q. Li, C. G. Williams, D. D. N. Sun, J. Wang, K. Leong, and J. H. Elisseeff. Photocrosslinkable polysaccharides based on chondroitin sulfate. J. Biomed. Mater. Res. A. 68A:28–33 (2004).

    Article  CAS  Google Scholar 

  13. Y. Yeo, J. A. Burdick, C. B. Highley, R. Marini, R. Langer, and D. S. Kohane. Peritoneal application of chitosan and uv-cross-linkable chitosan. J. Biomed. Mater. Res. A. 78A:668–675 (2006).

    Article  CAS  Google Scholar 

  14. S. H. M. Sontjens, D. L. Nettles, M. A. Carnahan, L. A. Setton, and M. W. Grinstaff. Biodendrimer-based hydrogel scaffolds for cartilage tissue repair. Biomacromolecules. 7:310–316 (2006).

    Article  PubMed  Google Scholar 

  15. J. Elisseeff, W. McIntosh, K. Anseth, S. Riley, P. Ragan, and R. Langer. Photoencapsulation of chondrocytes in poly(ethylene oxide)-based semi-interpenetrating networks. J. Biomed. Mater. Res. 51:164–171 (2000).

    Article  PubMed  CAS  Google Scholar 

  16. N. S. Hwang, S. Varghese, Z. Zhang, and J. Elisseeff. Chondrogenic differentiation of human embryonic stem cell-derived cells in arginine-glycine-aspartate modified hydrogels. Tissue Eng. 12:2695–2706 (2006).

    Article  PubMed  CAS  Google Scholar 

  17. S. J. Bryant, K. L. Durand, and K. S. Anseth. Manipulations in hydrogel chemistry control photoencapsulated chondrocyte behavior and their extracellular matrix production. J. Biomed. Mater. Res. A. 67A:1430–1436 (2003).

    Article  CAS  Google Scholar 

  18. M. Dadsetan, J. P. Szatkowski, M. J. Yaszemski, and L. C. Lu. Characterization of photo-cross-linked oligo[poly(ethylene glycol) fumarate] hydrogels for cartilage tissue engineering. Biomacromolecules. 8:1702–1709 (2007).

    Article  PubMed  CAS  Google Scholar 

  19. J. A. Burdick, and K. S. Anseth. Photoencapsulation of osteoblasts in injectable rgd-modified peg hydrogels for bone tissue engineering. Biomaterials. 23:4315–4323 (2002).

    Article  PubMed  CAS  Google Scholar 

  20. D. S. W. Benoit, A. R. Durney, and K. S. Anseth. Manipulations in hydrogel degradation behavior enhance osteoblast function and mineralized tissue formation. Tissue Eng. 12:1663–1673 (2006).

    Article  PubMed  CAS  Google Scholar 

  21. D. A. Wang, C. G. Williams, F. Yang, N. Cher, H. Lee, and J. H. Elisseeff. Bioresponsive phosphoester hydrogels for bone tissue engineering. Tissue Eng. 11:201–213 (2005).

    Article  PubMed  CAS  Google Scholar 

  22. M. J. Mahoney, and K. S. Anseth. Three-dimensional growth and function of neural tissue in degradable polyethylene glycol hydrogels. Biomaterials. 27:2265–2274 (2006).

    Article  PubMed  CAS  Google Scholar 

  23. V. A. Liu, and S. N. Bhatia. Three-dimensional photopatterning of hydrogels containing living cells. Biomed. Microdevices. 4:257–266 (2002).

    Article  CAS  Google Scholar 

  24. S. Gerecht, J. A. Burdick, L. S. Ferreira, S. A. Townsend, R. Langer, and G. Vunjak-Novakovic. Hyaluronic acid hydrogen for controlled self-renewal and differentiation of human embryonic stem cells. Proc. Natl. Acad. Sci. U. S. A. 104:11298–11303 (2007).

    Article  PubMed  CAS  Google Scholar 

  25. G. M. Cruise, D. S. Scharp, and J. A. Hubbell. Characterization of permeability and network structure of interfacially photopolymerized poly(ethylene glycol) diacrylate hydrogels. Biomaterials. 19:1287–94 (1998).

    Article  PubMed  CAS  Google Scholar 

  26. N. A. Peppas, J. Z. Hilt, A. Khademhosseini, and R. Langer. Hydrogels in biology and medicine: From molecular principles to bionanotechnology. Adv. Mater. 18:1345–1360 (2006).

    Article  CAS  Google Scholar 

  27. M. N. Mason, A. T. Metters, C. N. Bowman, and K. S. Anseth. Predicting controlled-release behavior of degradable pla-b-peg-b-pla hydrogels. Macromolecules. 34:4630–4635 (2001).

    Article  CAS  Google Scholar 

  28. M. M. Knight, D. A. Lee, and D. L. Bader. Distribution of chondrocyte deformation in compressed agarose gel using confocal microscopy. Cell. Eng. 1:97–102 (1996).

    Google Scholar 

  29. P. M. Freeman, R. N. Natarajan, J. H. Kimura, and T. P. Andriacchi. Chondrocyte cells respond mechanically to compressive loads. J. Orthop. Res. 12:311–320 (1994).

    Article  PubMed  CAS  Google Scholar 

  30. I. Villanueva, D. S. Hauschulz, D. Mejic, and S. J. Bryant. Static and dynamic compressive strains influence nitric oxide production and chondrocyte bioactivity when encapsulated in peg hydrogels of different crosslinking densities. Osteoarthr. Cartil. in press (2008).

  31. G. D. Nicodemus, I. Villanueva, and S. J. Bryant. Mechanical stimulation of tmj condylar chondrocytes encapsulated in peg hydrogels. J. Biomed. Mater. Res. A. 83A:323–331 (2007).

    Article  CAS  Google Scholar 

  32. P. Chomczynski. A reagent for the single-step simultaneous isolation of rna, dna and proteins from cell and tissue samples. Biotechniques. 15:532–& (1993).

    PubMed  CAS  Google Scholar 

  33. L. Galois, S. Hutasse, D. Cortial, C. F. Rousseau, L. Grossin, M. C. Ronziere, D. Herbage, and A. M. Freyria. Bovine chondrocyte behaviour in three-dimensional type i collagen gel in terms of gel contraction, proliferation and gene expression. Biomaterials. 27:79–90 (2006).

    Article  PubMed  CAS  Google Scholar 

  34. A. P. Hollander, T. F. Heathfield, C. Webber, Y. Iwata, R. Bourne, C. Rorabeck, and A. P. Poole. Increased damage to type-ii collagen in osteoarthritic articular-cartilage detected by a new immunoassay. J. Clin. Invest. 93:1722–1732 (1994).

    Article  PubMed  CAS  Google Scholar 

  35. R. W. Farndale, D. J. Buttle, and A. J. Barrett. Improved quantitation and discrimination of sulfated glycosaminoglycans by use of dimethylmethylene blue. Biochim. Biophys. Acta. 883:173–177 (1986).

    PubMed  CAS  Google Scholar 

  36. Y. J. Kim, R. L. Y. Sah, J. Y. H. Doong, and A. J. Grodzinsky. Fluorometric assay of DNA in cartilage explants using hoechst-33258. Anal. Biochem. 174:168–176 (1988).

    Article  PubMed  CAS  Google Scholar 

  37. F. Guilak, W. R. Jones, H. P. Ting-Beall, and G. M. Lee. The deformation behavior and mechanical properties of chondrocytes in articular cartilage. Osteoarthr. Cartil. 7:59–70 (1999).

    Article  PubMed  CAS  Google Scholar 

  38. M. M. Knight, J. M. Ross, A. F. Sherwin, D. A. Lee, D. L. Bader, and C. A. Poole. Chondrocyte deformation within mechanically and enzymatically extracted chondrons compressed in agarose. Biochim. Biophys. Acta. 1526:141–146 (2001).

    PubMed  CAS  Google Scholar 

  39. F. Guilak, L. G. Alexopoulos, M. L. Upton, I. Youn, J. B. Choi, L. Cao, L. A. Setton, and M. A. Haider. The pericellular matrix as a transducer of biomechanical and biochemical signals in articular cartilage. Ann. N. Y. Acad. Sci. 1068:498–512 (2006).

    Article  PubMed  CAS  Google Scholar 

  40. R. L. Mauck, M. A. Soltz, C. C. B. Wang, D. D. Wong, P. H. G. Chao, W. B. Valhmu, C. T. Hung, and G. A. Ateshian. Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J. Biomech. Eng. 122:252–260 (2000).

    Article  PubMed  CAS  Google Scholar 

  41. R. L. Mauck, B. A. Byers, X. Yuan, and R. S. Tuan. Regulation of cartilaginous ecm gene transcription by chondrocytes and mscs in 3d culture in response to dynamic loading. Biomech. Model. Mechanobiol. 6:113–125 (2007).

    Article  PubMed  CAS  Google Scholar 

  42. J. B. Fitzgerald, M. Jin, D. Dean, D. J. Wood, M. H. Zheng, and A. J. Grodzinsky. Mechanical compression of cartilage explants induces multiple time-dependent gene expression patterns and involves intracellular calcium and cyclic amp. J. Biol. Chem. 279:19502–19511 (2004).

    Article  PubMed  CAS  Google Scholar 

  43. J. N. A. De Croos, S. S. Dhaliwal, M. D. Grynpas, R. M. Pilliar, and R. A. Kandel. Cyclic compressive mechanical stimulation induces sequential catabolic and anabolic gene changes in chondrocytes resulting in increased extracellular matrix accumulation. Matrix Biology. 25:323–331 (2006).

    Article  PubMed  Google Scholar 

  44. G. Sharma, R. K. Saxena, and P. Mishra. Differential effects of cyclic and static pressure on biochemical and morphological properties of chondrocytes from articular cartilage. Clin. Biomech. 22:248–255 (2007).

    Article  Google Scholar 

  45. C. A. Poole. Articular cartilage chondrons: Form, function and failure. J. Anat. 191:1–13 (1997).

    Article  PubMed  Google Scholar 

  46. E. Ruoslahti. Rgd and other recognition sequences for integrins. Annu. Rev. Cell Dev. Biol. 12:697–715 (1996).

    Article  PubMed  CAS  Google Scholar 

  47. M. Enomoto-Iwamoto, M. Iwamoto, K. Nakashima, Y. Mukudai, D. Boettiger, M. Pacifici, K. Kurisu, and F. Suzuki. Involvement of alpha 5 beta 1 integrin in matrix interactions and proliferation of chondrocytes. J. Bone Miner. Res. 12:1124–1132 (1997).

    Article  PubMed  CAS  Google Scholar 

  48. C. N. Salinas, B. B. Cole, A. M. Kasko, and K. S. Anseth. Chondrogenic differentiation potential of human mesenchymal stem cells photoencapsulated within poly(ethylene glycol)-arginine-glycine-aspartic acid-serine thiol-methacrylate mixed-mode networks. Tissue Eng. 13:1025–1034 (2007).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the NIH with a research grant from the NIDCR (K22 DE016608). The authors also acknowledge support from the Department of Education’s Graduate Assistantships in Areas of National Need Fellowship to GDN and IV and a NASA Harriet Jenkins Predoctoral Fellowship to IV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie J. Bryant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bryant, S.J., Nicodemus, G.D. & Villanueva, I. Designing 3D Photopolymer Hydrogels to Regulate Biomechanical Cues and Tissue Growth for Cartilage Tissue Engineering. Pharm Res 25, 2379–2386 (2008). https://doi.org/10.1007/s11095-008-9619-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9619-y

KEY WORDS

Navigation