Skip to main content

Advertisement

Log in

Decreased Lithium Disposition to Cerebrospinal Fluid in Rats with Glycerol-induced Acute Renal Failure

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The lithium disposition to cerebrospinal fluid (CSF) was evaluated in rats with acute renal failure (ARF) to examine whether electrolyte homeostasis of the CSF is perturbed by kidney dysfunction. In addition, the effects of renal failure on choroid plexial expressions of the Na+–K+–2Cl co-transporter (NKCC1) and Na+/H+ exchanger (NHE1) were also studied.

Methods

After lithium was intravenously administered at a dose of 4 mmol/kg, its concentration profile in plasma was evaluated by collecting plasma specimens, while that in CSF was monitored with a microdialysis probe in the lateral ventricles. NKCC1 and NHE1 expressions were measured via the Western immunoblot method using membrane specimens prepared from the choroid plexus in normal and ARF rats.

Results

The lithium concentration in CSF of ARF rats was 30% lower than that of normal rats, while their plasma lithium profiles were almost the same, indicating that the lithium disposition to CSF was decreased in ARF rats. It was revealed that the choroid plexial expression of NKCC1 was increased by 40% in ARF rats, but that of NHE1 was unchanged.

Conclusion

ARF decreases the lithium disposition to CSF, possibly by promoting lithium efflux from CSF due to increased NKCC1 expression in the choroid plexus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. Schnermann. Sodium transport deficiency and sodium balance in gene-targeted mice. Acta. Physiol. Scand. 173:59–66 (2001).

    Article  PubMed  CAS  Google Scholar 

  2. D. Biemesderfer, J. Pizzonia, A. Abu-Alfa, M. Exner, R. Reilly, P. Igarashi, and P. S. Aronson. NHE3: a Na+/H+ exchanger isoform of renal brush border. Am. J. Physiol. 265:F736–F742 (1993).

    PubMed  CAS  Google Scholar 

  3. M. R. Kaplan, D. B. Mount, and E. Delpire. Molecular mechanisms of NaCl cotransport. Annu. Rev. Physiol. 58:649–668 (1996).

    Article  PubMed  CAS  Google Scholar 

  4. H. Garty, and L. G. Palmer. Epithelial sodium channels: function, structure, and regulation. Physiol. Rev. 77:359–396 (1997).

    PubMed  CAS  Google Scholar 

  5. F. A. Leblond, L. Giroux, J. P. Villeneuve, and V. Pichette. Decreased in vivo metabolism of drugs in chronic renal failure. Drug Metab. Dispos. 28:1317–1320 (2000).

    PubMed  CAS  Google Scholar 

  6. Y. J. Moon, A. K. Lee, H. C. Chung, E. J. Kim, S. H. Kim, D. C. Lee, I. Lee, S. G. Kim, and M. G. Lee. Effects of acute renal failure on the pharmacokinetics of chlorzoxazone in rats. Drug Metab. Dispos. 31:776–784 (2003).

    Article  PubMed  CAS  Google Scholar 

  7. T. Kimura, A. Kobayashi, M. Kobayashi, K. Numata, Y. Kawai, Y. Kurosaki, T. Nakayama, M. Mori, and M. Awai. Intestinal absorption of drugs in rats with glycerol-induced acute renal failure. Chem. Pharm. Bull. 36:1847–1856 (1988).

    PubMed  CAS  Google Scholar 

  8. H. Tanabe, S. Taira, M. Taguchi, and Y. Hashimoto. Pharmacokinetics and hepatic extraction of metoprolol in rats with glycerol-induced acute renal failure. Biol. Pharm. Bull. 30:552–555 (2007).

    Article  PubMed  CAS  Google Scholar 

  9. F. A. Leblond, M. Petrucci, P. Dubé, G. Bernier, A. Bonnardeaux, and V. Pichette. Downregulation of intestinal cytochrome p450 in chronic renal failure. J. Am. Soc. Nephrol. 13:1579–1585 (2002).

    Article  PubMed  CAS  Google Scholar 

  10. H. Sun, L. Frassetto, and L. Z. Benet. Effects of renal failure on drug transport and metabolism. Pharmacol. Ther. 109:1–11 (2006).

    Article  PubMed  CAS  Google Scholar 

  11. Y. Masubuchi, M. Kawasaki, and T. Horie. Down-regulation of hepatic cytochrome P450 enzymes associated with cisplatin-induced acute renal failure in male rats. Arch. Toxicol. 80:347–353 (2006).

    Article  PubMed  CAS  Google Scholar 

  12. J. Naud, J. Michaud, C. Boisvert, K. Desbiens, F. A. Leblond, A. Mitchell, C. Jones, A. Bonnardeaux, and V. Pichette. Down-regulation of intestinal drug transporters in chronic renal failure in rats. J. Pharmacol. Exp. Ther. 320:978–985 (2007).

    Article  PubMed  CAS  Google Scholar 

  13. J. Dingemanse, M. Polhuijs, and M. Danhof. Altered pharmacokinetic- pharmacodynamic relationship of heptabarbital in experimental renal failure in rats. J. Pharmacol. Exp. Ther. 246:371–376 (1988).

    PubMed  CAS  Google Scholar 

  14. M. Yasuhara, and G. Levy. Kinetics of drug action in disease states. XXVII. Effect of experimental renal failure on the pharmacodynamics of zoxazolamine and chlorzoxazone. J. Pharmacol. Exp. Ther. 246:165–169 (1988).

    PubMed  CAS  Google Scholar 

  15. J. Kawakami, K. Ohashi, K. Yamamoto, Y. Sawada, and T. Iga. Effect of acute renal failure on neurotoxicity of enoxacin in rats. Biol. Pharm. Bull. 20:931–934 (1997).

    PubMed  CAS  Google Scholar 

  16. Y. Ishiwata, K. Son, Y. Itoga, and M. Yasuhara. Effects of acute renal failure and ganciclovir on the pharmacodynamics of levofloxacin-induced seizures in rats. Biol. Pharm. Bull. 30:745–750 (2007).

    Article  PubMed  CAS  Google Scholar 

  17. M. Nagata, T. Fujichika, and M. Yasuhara. Effect of experimental renal failure and hypotonic hyponatremia on the pharmacodynamics of cefazolin-induced seizures in rats. Pharm. Res. 20:937–942 (2003).

    Article  PubMed  CAS  Google Scholar 

  18. B. S. Huang, W. J. Cheung, H. Wang, J. Tan, R. A. White, and F. H. Leenen. Activation of brain renin–angiotensin–aldosterone system by central sodium in Wistar rats. Am. J. Physiol. Heart Circ. Physiol. 291:H1109–H1117 (2006).

    Article  PubMed  CAS  Google Scholar 

  19. D. Mouginot, S. Laforest, and G. Drolet. Challenged sodium balance and expression of angiotensin type 1A receptor mRNA in the hypothalamus of Wistar and Dahl rat strains. Regul. Pept. 142:44–51 (2007).

    Article  PubMed  CAS  Google Scholar 

  20. E. Watanabe, T. Y. Hiyama, H. Shimizu, R. Kodama, N. Hayashi, S. Miyata, Y. Yanagawa, K. Obata, and M. Noda. Sodium-level-sensitive sodium channel Nax is expressed in glial laminate processes in the sensory circumventricular organs. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290:R568–R576 (2006).

    PubMed  CAS  Google Scholar 

  21. S. N. Orlov, and A. A. Mongin. Salt-sensing mechanisms in blood pressure regulation and hypertension. Am. J. Physiol. Heart Circ. Physiol. 293:H2039–H2053 (2007).

    Article  PubMed  CAS  Google Scholar 

  22. C. S. Chaurasia. In vivo microdialysis sampling: theory and applications. Biomed. Chromatogr. 13:317–332 (1999).

    Article  PubMed  CAS  Google Scholar 

  23. Y. Kurosaki, M. Tagawa, A. Omoto, H. Suito, Y. Komori, H. Kawasaki, and T. Aiba. Evaluation of intramuscular lateral distribution profile of topically administered acetaminophen in rats. Int. J. Pharm. 343:190–195 (2007).

    Article  PubMed  CAS  Google Scholar 

  24. S. Busch, B. C. Burckhardt, and W. Siffert. Expression of the human sodium/proton exchanger NHE-1 in Xenopus laevis oocytes enhances sodium/proton exchange activity and establishes sodium/lithium countertransport. Pflügers Arch. 429:859–869 (1995).

    Article  PubMed  CAS  Google Scholar 

  25. R. T. Timmer, and J. M. Sands. Lithium intoxication. J. Am. Soc. Nephrol. 10:666–674 (1999).

    PubMed  CAS  Google Scholar 

  26. P. D. Brown, S. L. Davies, T. Speake, and I. D. Millar. Molecular mechanisms of cerebrospinal fluid production. Neuroscience. 129:957–970 (2004).

    Article  PubMed  CAS  Google Scholar 

  27. M. D. Plotkin, M. R. Kaplan, L. N. Peterson, S. R. Gullans, S. C. Hebert, and E. Delpire. Expression of the Na+–K+–2Cl cotransporter BSC2 in the nervous system. Am. J. Physiol. 272:C173–C183 (1997).

    PubMed  CAS  Google Scholar 

  28. Q. Wu, E. Delpire, S. C. Hebert, and K. Strange. Functional demonstration of Na+–K+–2Cl cotransporter activity in isolated, polarized choroid plexus cells. Am. J. Physiol. 275:C1565–H1572 (1998).

    PubMed  CAS  Google Scholar 

  29. N. H. Nakamura, D. R. Rosell, K. T. Akama, and B. S. McEwen. Estrogen and ovariectomy regulate mRNA and protein of glutamic acid decarboxylases and cation–chloride cotransporters in the adult rat hippocampus. Neuroendocrinology. 80:308–323 (2004).

    Article  PubMed  CAS  Google Scholar 

  30. Z. B. Redzic, J. E. Preston, J. A. Duncan, A. Chodobski, and J. Szmydynger-Chodobska. The choroid plexus–cerebrospinal fluid system: from development to aging. Curr. Top Dev. Biol. 71:1–52 (2005).

    Article  PubMed  CAS  Google Scholar 

  31. J. Praetorius. Water and solute secretion by the choroid plexus. Pflügers Arch. 454:1–18 (2007).

    Article  PubMed  CAS  Google Scholar 

  32. T. Aiba, M. Horiuchi, T. Makita, Y. Komori, H. Kawasaki, and Y. Kurosaki. Peritoneal dialysis alters tolbutamide pharmacokinetics in rats with experimental acute renal failure. Drug Metab. Pharmacokinet. 21:291–296 (2006).

    Article  PubMed  CAS  Google Scholar 

  33. G. Paxinos, and C. Watson. The Rat Brain in Stereotaxic Coordinates (2/e). Academic, New York, 1986.

    Google Scholar 

  34. R. D. Egleton, C. C. Campos, J. D. Huber, R. C. Brown, and T. P. Davis. Differential effects of diabetes on rat choroid plexus ion transporter expression. Diabetes. 52:1496–1501 (2003).

    Article  PubMed  CAS  Google Scholar 

  35. T. Aiba, Y. Takehara, M. Okuno, and Y. Hashimoto. Poor correlation between intestinal and hepatic metabolic rates of CYP3A4 substrates in rats. Pharm. Res. 20:745–748 (2003).

    Article  PubMed  CAS  Google Scholar 

  36. T. Aiba, M. Yoshinaga, K. Ishida, Y. Takehara, and Y. Hashimoto. Intestinal expression and metabolic activity of the CYP3A subfamily in female rats. Biol. Pharm. Bull. 28:311–315 (2005).

    Article  PubMed  CAS  Google Scholar 

  37. V. A. Murphy, and C. E. Johanson. Na+–H+ exchange in choroid plexus and CSF in acute metabolic acidosis or alkalosis. Am. J. Physiol. 258:F1528–F1537 (1990).

    PubMed  CAS  Google Scholar 

  38. B. S. Huang, and F. H. Leenen. Brain amiloride-sensitive Phe-Met-Arg-Phe-NH2-gated Na+ channels and Na+-induced sympathoexcitation and hypertension. Hypertension. 39:557–561 (2002).

    Article  PubMed  CAS  Google Scholar 

  39. B. S. Huang, B. N. Van Vliet, and F. H. Leenen. Increases in CSF [Na+] precede the increases in blood pressure in Dahl S rats and SHR on a high-salt diet. Am. J. Physiol. Heart Circ. Physiol. 287:H1160–H1166 (2004).

    Article  PubMed  CAS  Google Scholar 

  40. T. S. Perrot-Sinal, C. J. Sinal, J. C. Reader, D. B. Speert, and M. M. McCarthy. Sex differences in the chloride cotransporters, NKCC1 and KCC2, in the developing hypothalamus. J. Neuroendocrinol. 19:302–308 (2007).

    Article  PubMed  CAS  Google Scholar 

  41. L. Ji, S. Masuda, H. Saito, and K. Inui. Down-regulation of rat organic cation transporter rOCT2 by 5/6 nephrectomy. Kidney Int. 62:514–524 (2002).

    Article  PubMed  CAS  Google Scholar 

  42. P. D. Metcalfe, and K. K. Meldrum. Sex differences and the role of sex steroids in renal injury. J. Urol. 176:15–21 (2006).

    Article  PubMed  CAS  Google Scholar 

  43. S. E. Mulroney, C. Woda, M. Johnson, and C. Pesce. Gender differences in renal growth and function after uninephrectomy in adult rats. Kidney Int. 56:944–953 (1999).

    Article  PubMed  CAS  Google Scholar 

  44. K. M. Park, J. I. Kim, Y. Ahn, A. J. Bonventre, and J. V. Bonventre. Testosterone is responsible for enhanced susceptibility of males to ischemic renal injury. J. Biol. Chem. 279:52282–52292 (2004).

    Article  PubMed  CAS  Google Scholar 

  45. K. Nakajima, H. Miyazaki, N. Niisato, and Y. Marunaka. Essential role of NKCC1 in NGF-induced neurite outgrowth. Biochem. Biophys. Res. Commun. 359:604–610 (2007).

    Article  PubMed  CAS  Google Scholar 

  46. H. Friess, Z. W. Zhu, F. F. di Mola, C. Kulli, H. U. Graber, A. Andren-Sandberg, A. Zimmermann, M. Korc, M. Reinshagen, and M. W. Büchler. Nerve growth factor and its high-affinity receptor in chronic pancreatitis. Ann. Surg. 230:615–624 (1999).

    Article  PubMed  CAS  Google Scholar 

  47. K. Bielefeldt, N. Ozaki, and G. F. Gebhart. Role of nerve growth factor in modulation of gastric afferent neurons in the rat. Am. Physiol. Gastrointest. Liver Physiol. 284:G499–G507 (2003).

    CAS  Google Scholar 

  48. N. E. Kremer, G. D’Arcangelo, S. M. Thomas, M. DeMarco, J. S. Brugge, and S. Halegoua. Signal transduction by nerve growth factor and fibroblast growth factor in PC12 cells requires a sequence of Src and Ras actions. J. Cell Biol. 115:809–819 (1991).

    Article  PubMed  CAS  Google Scholar 

  49. T. Ito, T. Suzuki, and H. Ichinose. Nerve growth factor-induced expression of the GTP cyclohydrolase I gene via Ras/MEK pathway in PC12D cells. J. Neurochem. 95:563–569 (2005).

    Article  PubMed  CAS  Google Scholar 

  50. M. D. Okusa, and L. J. Crystal. Clinical manifestations and management of acute lithium intoxication. Am. J. Med. 97:383–389 (1994).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuya Aiba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakae, R., Ishikawa, A., Niso, T. et al. Decreased Lithium Disposition to Cerebrospinal Fluid in Rats with Glycerol-induced Acute Renal Failure. Pharm Res 25, 2243–2249 (2008). https://doi.org/10.1007/s11095-008-9612-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9612-5

KEY WORDS

Navigation