Skip to main content

Advertisement

Log in

In Vitro and In Vivo Investigation on PLA–TPGS Nanoparticles for Controlled and Sustained Small Molecule Chemotherapy

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The aim of this work was to evaluate in vivo poly(lactide)-d-α-tocopheryl polyethylene glycol 1,000 succinate nanoparticles (PLA–TPGS NPs) for controlled and sustained small molecule drug chemotherapy.

Methods

The drug-loaded PLA–TPGS NPs were prepared by the dialysis method. Particle size, surface morphology and surface chemistry, in vitro drug release and cellular uptake of NPs were characterized. In vitro and in vivo therapeutic effects of the nanoparticle formulation were evaluated in comparison with Taxol®.

Results

The PLA–TPGS NP formulation exhibited significant advantages in in vivo pharmacokinetics and xenograft tumor model versus the PLGA NP formulation and the pristine drug. Compared with Taxol®, the PLA–TPGS NP formulation achieved 27.4-fold longer half-life in circulation, 1.6-fold larger area-under-the-curve (AUC) with no portion located above the maximum tolerance concentration level. For the first time in the literature, one shot for 240 h chemotherapy was achieved in comparison with only 22 h chemotherapy for Taxol® at the same 10 mg/kg paclitaxel dose. Xenograft tumor model further confirmed the advantages of the NP formulation versus Taxol®.

Conclusions

The PLA–TPGS NP formulation can realize a way of controlled and sustained drug release for more than 10 days, which relieves one of the two major concerns on cancer nanotechnology, i.e. feasibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R. C. Donehower, E. K. Rowinsky, L. B. Grochow, and S. M. Longnecker. Phase I trial of Taxol in patients with advanced cancer. Cancer Treat. Rep. 71:1171–1177 (1987).

    PubMed  CAS  Google Scholar 

  2. N. M. Lopes, E. G. Adams, T. W. Pitts, and B. K. Bhuyan. Cell kill kinetics and cell-cycle effects of taxol on human and hamster ovarian cell lines. Cancer Chemother. Pharmacol. 32:235–242 (1993).

    Article  PubMed  CAS  Google Scholar 

  3. M. C. Wani, H. L. Taylor, and M. E. Wall. Plant antitumor agents VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc. 93:2325–2327 (1971).

    Article  PubMed  CAS  Google Scholar 

  4. R. T. Dorr. Pharmacology and toxicology of Cremophor EL diluent. Ann. Pharmacother. 28:S11–S14 (1994).

    PubMed  CAS  Google Scholar 

  5. M. Kongshaug, L. S. Cheng, J. Moan, and C. Rimington. Interaction of Cremophor EL with human plasma. Int. J. Biochem. 23:473–478 (1991).

    Article  PubMed  CAS  Google Scholar 

  6. R. B. Weiss, R. C. Donehower, P. H. Wiernik, T. Ohnuma, R. J. Gralla, D. L. Trump, J. R. Baker, D. A. Van Echo, D. D. Von Hoff, and B. Leyland Jones. Hypersensitivity reactions from taxol. J. Clin. Oncol. 8:1263–1268 (1990).

    PubMed  CAS  Google Scholar 

  7. S. S. Feng, and S. Chien. Chemotherapeutic engineering: Application and further development of chemical engineering principles for chemotherapy of cancer and other diseases. Chem. Eng. Sci. 58:4087–4114 (2003).

    Article  CAS  Google Scholar 

  8. S. S. Feng. Nanoparticles of biodegradable polymers for new-concept chemotherapy. Expert Rev. Med. Devices. 1:115–125 (2004).

    Article  PubMed  CAS  Google Scholar 

  9. K. Fu, D. W. Pack, A. M. Klibanov, and R. Langer. Visual evidence of acidic environment within degrading poly(lactic-co-glycolic acid) (PLGA) microspheres. Pharm. Res. 17:100–106 (2000).

    Article  PubMed  CAS  Google Scholar 

  10. S. B. Zhou, X. Y. Liao, X. H. Li, X. M. Deng, and H. Li. Poly-d,l-lactide-co-poly(ethylene glycol) microspheres as potential vaccine delivery systems. J. Control. Release. 86:195–205 (2003).

    Article  PubMed  CAS  Google Scholar 

  11. W. J. Krasavage, and C. J. Terhaar. d-alpha-tocopheryl poly(ethylene glycol) 1000 succinate—acute toxicity, subchronic feeding, reproduction, and teratologic studies in rat. J. Agric. Food Chem. 25:273–278 (1977).

    Article  PubMed  CAS  Google Scholar 

  12. K. Bogman, F. Erne-Brand, J. Alsenz, and J. Drewe. The role of surfactants in the reversal of active transport mediated by multidrug resistance proteins. J. Pharm. Sci. 92:1250–1261 (2003).

    Article  PubMed  CAS  Google Scholar 

  13. T. Chang, L. Z. Benet, and M. F. Hebert. The effect of water-soluble Vitamin-E (TPGS) on oral cyclosporine pharmacokinetics in healthy-volunteers. Clin. Pharmacol. Ther. 57:297–303 (1995).

    Google Scholar 

  14. Y. V. R. Prasad, S. P. Puthli, S. Eaimtrakarn, M. Ishida, Y. Yoshikawa, N. Shibata, and K. Takada. Enhanced intestinal absorption of vancomycin with Labrasol and d-a-tocopheryl PEG 1000 succinate in rats. Int. J. Pharm. 250:181–190 (2003).

    Article  PubMed  CAS  Google Scholar 

  15. L. Yu, A. Bridgers, J. Polli, A. Vickers, S. Long, A. Roy, R. Winnike, and M. Coffin. Vitamin E-TPGS increases absorption flux of an HIV protease inhibitor by enhancing its solubility and permeability. Pharm. Res. 16:1812–1817 (1999).

    Article  PubMed  CAS  Google Scholar 

  16. J. M. Dintaman, and J. A. Silverman. Inhibition of P-glycoprotein by d-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS). Pharm. Res. 16:1550–1556 (1999).

    Article  PubMed  CAS  Google Scholar 

  17. J. R. Fischer, K. R. Harkin, and L. C. Freeman. Concurrent administration of water-soluble vitamin E can increase the oral bioavailability of cyclosporine A in healthy dogs. Vet. Ther. 3:465–473 (2002).

    PubMed  Google Scholar 

  18. L. Mu, and S. S. Feng. Vitamin E TPGS used as emulsifier in the solvent evaporation/extraction technique for fabrication of polymeric nanospheres for controlled release of paclitaxel (TaxolÒ). J. Control. Release. 80:129–144 (2002).

    Article  PubMed  CAS  Google Scholar 

  19. L. Mu, and S. S. Feng. A novel controlled release formulation for the anticancer drug paclitaxel (TaxolÒ): PLGA nanoparticles containing vitamin E TPGS. J. Control. Release. 86:33–48 (2003).

    Article  PubMed  CAS  Google Scholar 

  20. K. Y. Win, and S. S. Feng. Effects of particles size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials. 26:2713–2722 (2005).

    Article  PubMed  CAS  Google Scholar 

  21. K. Y. Win, and S. S. Feng. In vitro and in vivo studies on vitamin E TPGS-emulsified poly(D, L-lactic-co-glycolic acid) nanoparticles for paclitaxel formulation. Biomaterials. 27:2285–2291 (2006).

    Article  PubMed  CAS  Google Scholar 

  22. Z. Zhang, and S. S. Feng. Nanoparticles of poly(lactide)/vitamin E TPGS copolymer for cancer chemotherapy: Synthesis, formulation, characterization and in vitro drug release. Biomaterials. 27:262–270 (2006).

    Article  PubMed  Google Scholar 

  23. Z. Zhang, and S. S. Feng. The drug encapsulation efficiency, in vitro drug release, cellular uptake and cytotoxicity of paclitaxel-loaded poly(lactide)-tocopheryl polyethylene glycol succinate nanoparticles. Biomaterials. 27:4025–4033 (2006).

    Article  PubMed  CAS  Google Scholar 

  24. Z. Zhang, and S. S. Feng. Self-assembled nanoparticles of poly(lactide)-Vitamin E TPGS copolymers for oral chemotherapy. Int. J. Pharm. 324:191–198 (2006).

    Article  PubMed  CAS  Google Scholar 

  25. J. Ryu, Y. I. Jeong, I. S. Kim, J. H. Lee, J. W. Nah, and S. H. Kim. Clonazepam release from core-shell type nanoparticles of poly(epsilon-caprolactone)/poly(ethylene glycol)/poly(epsilon-caprolactone) triblock copolymers. Int. J. Pharm. 200:231–242 (2002).

    Article  Google Scholar 

  26. L. W. Seymour. Passive tumor targeting of soluble macromolecules and drug conjugates. Crit. Rev. Ther. Drug Carrier Syst. 9:135–187 (1992).

    PubMed  CAS  Google Scholar 

  27. H. Maeda, J. Wu, T. Sawa, Y. Matsumura, and K. Hori. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Release. 65:271–284 (2000).

    Article  PubMed  CAS  Google Scholar 

  28. Y. Dong, and S. S. Feng. Methoxy poly(ethylene glycol)-poly(lactide) (MPEG-PLA) nanoparticles for controlled delivery of anticancer drugs. Biomaterials. 25:2843–2849 (2004).

    Article  PubMed  CAS  Google Scholar 

  29. T. Govender, S. Stolnik, M. C. Garnett, L. Illum, and S. S. Davis. PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug. J. Control. Release. 57:171–185 (1999).

    Article  PubMed  CAS  Google Scholar 

  30. W. J. Lin, L. W. Juang, and C. C. Lin. Stability and release performance of a series of pegylated copolymeric micelles. Pharm. Res. 20:668–73 (2003).

    Article  PubMed  CAS  Google Scholar 

  31. J. E. Liebmann, J. A. Cook, C. Lipschultz, D. Teague, J. Fisher, and J. B. Mitchell. Cytotoxic studies of paclitaxel (Taxol) in human tumor cell lines. Br. J. Cancer. 68:1104–1109 (1993).

    PubMed  CAS  Google Scholar 

  32. E. S. Lee, K. Na, and Y. H. Bae. Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7 tumor. J. Control. Release. 103:405–418 (2005).

    Article  PubMed  CAS  Google Scholar 

  33. Z. Xu, W. Gu, J. Huang, H. Sui, Z. Zhou, Y. Yang, Z. Yan, and Y. Li. In vitro and in vivo evaluation of actively targetable nanoparticles for paclitaxel delivery. Int. J. Pharm. 288:361–368 (2005).

    Article  PubMed  CAS  Google Scholar 

  34. Y. Chen, G. Dalwadi, and H. A. E. Benson. Drug delivery across the blood–brain barrier. Curr. Drug Deliv. 1:361–76 (2004).

    Article  PubMed  CAS  Google Scholar 

  35. A. Moreno, L. A. Lopez, A. Fabra, and C. Arus. 1H MRS markers of tumor growth in intrasplenic tumors and liver metastasis induced by injection of HT-29 cells in nude mice spleen. NMR Biomed. 11:93–106 (1998).

    Article  PubMed  CAS  Google Scholar 

  36. M. G. Sacco, S. Soldati, E. Mira Cato, L. Cattaneo, G. Pratesi, E. Scanziani, and P. Vezzoni. Combined effects on tumor growth and metastasis by anti-estrogenic and antiangiogenic therapies in MMTV-neu mice. Gene Ther. 9:1338–1341 (2002).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful of Mr. Min Sung Chong, FYP students in Department of Chemical and Biomolecular Engineering, National University of Singapore, for their assistance in experiments and Dr. Linyun Zhao for the HPLC analysis method on plasma samples. This research was supported by A*STAR BMRC Singapore Cancer Syndicate Grant UU0028 (SS Feng, PI) and NUS FRC Grant R279-000-226-112 (SS Feng, PI). Zhang ZP thanks NUS for the financial support for his Ph.D. study and Lee SH thanks EDB and NUSNNI for the financial support for her M.Eng. study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Si-Shen Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Lee, S.H., Gan, C.W. et al. In Vitro and In Vivo Investigation on PLA–TPGS Nanoparticles for Controlled and Sustained Small Molecule Chemotherapy. Pharm Res 25, 1925–1935 (2008). https://doi.org/10.1007/s11095-008-9611-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9611-6

KEY WORDS

Navigation