Skip to main content

Advertisement

Log in

Inhibition of Polymorphic Human Carbonyl Reductase 1 (CBR1) by the Cardioprotectant Flavonoid 7-monohydroxyethyl Rutoside (monoHER)

  • Short Communication
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Carbonyl reductase 1 (CBR1) reduces the anticancer anthracyclines doxorubicin and daunorubicin into the cardiotoxic metabolites doxorubicinol and daunorubicinol. We evaluated whether the cardioprotectant monoHER inhibits the activity of polymorphic CBR1.

Methods

We performed enzyme kinetic studies with monoHER, CBR1 (CBR1 V88 and CBR1 I88) and anthracycline substrates. We also characterized CBR1 inhibition by the related flavonoids triHER and quercetin.

Results

MonoHER inhibited the activity of CBR1 V88 and CBR1 I88 in a concentration-dependent manner. The IC50 values of monoHER were lower for CBR1 I88 compared to CBR1 V88 for the substrates daunorubicin and doxorubicin (daunorubicin, IC50-CBR1 I88 = 164 μM vs. IC50-CBR1 V88 = 219 μM; doxorubicin, IC50-CBR1 I88 = 37 μM vs. IC50-CBR1 V88 = 59 μM; p < 0.001). Similarly, the flavonoids triHER and quercetin exhibited lower IC50 values for CBR1 I88 compared to CBR1 V88 (p < 0.001). MonoHER acted as a competitive CBR1 inhibitor when using daunorubicin as a substrate Ki = 45 ± 18 μM. MonoHER acted as an uncompetitive CBR1 inhibitor for the small quinone substrate menadione Ki = 33 ± 17 μM.

Conclusions

The cardioprotectant monoHER inhibits CBR1 activity. CBR1 V88I genotype status and the type of anthracycline substrate dictate the inhibition of CBR1 activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

NADPH:

nicotinamide adenine dinucleotide 2′-phosphate

triHER:

5,7,2 trihydroxiethylrutoside (Venoruton®)

References

  1. G. Minotti, S. Recalcati, P. Menna, E. Salvatorelli, G. Corna, and G. Cairo. Doxorubicin cardiotoxicity and the control of iron metabolism: quinone-dependent and independent mechanisms. Methods Enzymol. 378:340–361 (2004).

    Article  PubMed  CAS  Google Scholar 

  2. A. Slupe, B. Williams, C. Larson, L. M. Lee, T. Primbs, A. J. Bruesch, C. Bjorklund, J. Peloquin, D. L. Warner, S. E. Shadle, H. A. Gambliel, B. J. Cusack, R. D. Olson, H. A. Charlier , and . Reduction of 13-deoxydoxorubicin and daunorubicinol anthraquinones by human carbonyl reductase. Cardiovasc. Toxicol. 5:365–376 (2005).

    Article  PubMed  CAS  Google Scholar 

  3. G. L. Forrest, S. Akman, J. Doroshow, H. Rivera, and W. D. Kaplan. Genomic sequence and expression of a cloned human carbonyl reductase gene with daunorubicin reductase activity. Mol. Pharmacol. 40:502–507 (1991).

    PubMed  CAS  Google Scholar 

  4. B. Gonzalez, S. Akman, J. Doroshow, H. Rivera, W. D. Kaplan, and G. L. Forrest. Protection against daunorubicin cytotoxicity by expression of a cloned human carbonyl reductase cDNA in K562 leukemia cells. Cancer Res. 55:4646–4650 (1995).

    PubMed  CAS  Google Scholar 

  5. R. D. Olson, P. S. Mushlin, D. E. Brenner, S. Fleischer, B. J. Cusack, B. K. Chang, and R. J. Boucek. Doxorubicin cardiotoxicity may be caused by its metabolite, doxorubicinol. Proc. Natl. Acad. Sci. U. S. A. 85:3585–3589 (1988).

    Article  PubMed  CAS  Google Scholar 

  6. B. J. Cusack, P. S. Mushlin, L. D. Voulelis, X. D. Li, R. J. Boucek, and R. D. Olson. Daunorubicin-induced cardiac injury in the rabbit: a role for daunorubicinol? Toxicol. Appl. Pharmacol. 118:177–185 (1993).

    Article  PubMed  CAS  Google Scholar 

  7. A. Mordente, E. Meucci, M. Giuseppe Ettore, G. Bruno, and M. Giorgio. Human heart cytosolic reductases and anthracycline cardiotoxicity. IUBMB Life. 52:83–88 (2001).

    Article  PubMed  CAS  Google Scholar 

  8. V. Gonzalez-Covarrubias, D. Ghosh, S. S. Lakhman, L. Pendyala, and J. G. Blanco. A functional genetic polymorphism on human carbonyl reductase 1 (CBR1 V88I) impacts on catalytic activity and NADPH binding affinity. Drug Metab. Dispos. 35:973–980 (2007).

    Article  PubMed  CAS  Google Scholar 

  9. A. Willems, A. Bruynzeel, M. Kedde, C. Groeningen, A. Bast, and W. Vijgh. A phase I study of monohydroxyethylrutoside in healthy volunteers. Cancer Chemother. Pharmacol. 57:678–684 (2006).

    Article  PubMed  CAS  Google Scholar 

  10. M. A. I. Abou El Hassan, M. A. Kedde, U. T. H. Zwiers, A. Bast, and W. J. F. van der Vijgh. The cardioprotector monoHER does not interfere with the pharmacokinetics or the metabolism of the cardiotoxic agent doxorubicin in mice. Cancer Chemother. Pharmacol. 51:306–310 (2003).

    PubMed  CAS  Google Scholar 

  11. A. M. E. Bruynzeel, H. W. M. Niessen, J. G. F. Bronzwaer, J. J. M. Van Der Hoeven, J. Berkhof, A. Bast, W. J. F. Van Der Vijgh, and C. J. Van Groeningen. The effect of monohydroxyethylrutoside on doxorubicin-induced cardiotoxicity in patients treated for metastatic cancer in a phase II study. Br. J. Cancer. 97:1084–1089 (2007).

    Article  PubMed  CAS  Google Scholar 

  12. K. M. Janisch, G. Williamson, P. Needs, and G. W. Plumb. Properties of quercetin conjugates: modulation of LDL oxidation and binding to human serum albumin. Free Radical Res. 38:877–884 (2004).

    Article  CAS  Google Scholar 

  13. H. Kaiserova, T. Simunek, W. J. F. van der Vijgh, A. Bast, and E. Kvasnickova. Flavonoids as protectors against doxorubicin cardiotoxicity: role of iron chelation, antioxidant activity and inhibition of carbonyl reductase. Biochim. Biophys. Acta. 1772:1065–1074 (2007).

    PubMed  CAS  Google Scholar 

  14. F. A. A. van Acker, E. Boven, K. Kramer, G. R. M. M. Haenen, A. Bast, and W. J. F. van der Vijgh. Frederine, a new and promising protector against doxorubicin-induced cardiotoxicity. Clin. Cancer Res. 7:1378–1384 (2001).

    PubMed  Google Scholar 

  15. A. Bast, G. R. M. M. Haenen, A. M. E. Bruynzeel, and W. J. F. Van Der Vijgh. Protection by flavonoids against anthracycline cardiotoxicity: from chemistry to clinical trials. Cardiovasc. Toxicol. 7:154–159 (2007).

    Article  PubMed  CAS  Google Scholar 

  16. B. Wermuth. Purification and properties of an NADPH-dependent carbonyl reductase from human brain. Relationship to prostaglandin 9-ketoreductase and xenobiotic ketone reductase. J. Biol. Chem. 256:1206–1213 (1981).

    PubMed  CAS  Google Scholar 

  17. K. M. Bohren, J. P. Von Wartburg, and B. Wermuth. Kinetics of carbonyl reductase from human brain. Biochem. J. 244:165–171 (1987).

    PubMed  CAS  Google Scholar 

  18. S. S. Lakhman, D. Ghosh, and J. G. Blanco. Functional significance of a natural allelic variant of Human Carbonyl Reductase 3 (CBR3). Drug. Metab. Dispos. 33:254–257 (2005).

    Article  PubMed  CAS  Google Scholar 

  19. I. H. Segel. Enzyme kineticsbehavior and analysis of rapid equilibrium and steady-state enzyme systems. Wiley, New York, 1993.

    Google Scholar 

Download references

Acknowledgments

National Institutes of Health/National Institute of General Medical Sciences Grant RO1GM73646 to J.G.B supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier G. Blanco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonzalez-Covarrubias, V., Kalabus, J.L. & Blanco, J.G. Inhibition of Polymorphic Human Carbonyl Reductase 1 (CBR1) by the Cardioprotectant Flavonoid 7-monohydroxyethyl Rutoside (monoHER). Pharm Res 25, 1730–1734 (2008). https://doi.org/10.1007/s11095-008-9592-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9592-5

KEY WORDS

Navigation