Skip to main content

Advertisement

Log in

Production of Ultrafine Sumatriptan Succinate Particles for Pulmonary Delivery

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Drug particle physical properties are critical for the efficiency of a drug delivered to the lung. The purpose of this study was to produce ultrafine sumatriptan succinate particles for inhalation.

Methods

Sumatriptan succinate particles were produced via reactive precipitation without any surfactants. Several low toxic organic solvents such as acetone, isopropanol, and tetrahydrofuran were investigated as the reaction medium. And the dry powder was obtained via spray drying. FT-IR, HPLC, SEM and XRD were exploited to characterize the physicochemical properties of the ultrafine sumatriptan succinate dry powder. The aerosol performance of the powder was evaluated using an Aeroliser®connected to a multi stage liquid impinger operating at 60 l/min.

Results

The mean particle size of the ultrafine sumatriptan succinate particles obtained under optimum conditions was in the range of 630∼679 nm and consequently they were in the respirable range. The spray-dried powder whose fine particle fraction was increased up to 50.6 ± 8.2% showed good aerosol performance whereas the vacuum-dried powder was approximate 18.2 ± 3.0%.

Conclusions

Good aerosol performance ultrafine sumatriptan succinate particles could be produced by reactive precipitation without any additives followed by spray drying at the optimum parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

References

  1. S. S. Colman, M. I. Brod, A. Krishnamurthy, C. R. Rowland, K. J. Jirgens, and B. Gomez-Mantilla. Treatment satisfaction, functional status, and health-related quality of life of migraine patients treated with Almotriptan or Sumatriptan. Clin. Ther. 23:127–145 (2001).

    Article  PubMed  CAS  Google Scholar 

  2. F. R. Taylor. Migraine headache: options for acute treatment. Curr. Neurol. Neurosci. Rep. 5:86–92 (2005).

    Article  PubMed  CAS  Google Scholar 

  3. N. T. Mathew, and E. W. Loder. Evaluating the triptans. Am. J. Med. Suppl 118:28S–35S (2005).

    Google Scholar 

  4. A. Femenía-Font, C. Balaguer-Fernández, V. Merino, and A. López-Castellano. Combination strategies for enhancing transdermal absorption of sumatriptan through skin. Int. J. Pharm. 323:125–130 (2006).

    Article  PubMed  CAS  Google Scholar 

  5. P. Tfelt-Hansen, P. De Vries, and P. R. Saxena. Triptans in migraine: a comparative review of pharmacology, pharmacokinetics and efficacy. Drugs. 60:1259–1287 (2000).

    Article  PubMed  CAS  Google Scholar 

  6. R. J. Majithiya, P. K. Ghosh, M. L. Umrethia, and R. S. R. Murthy. Thermoreversible–mucoadhesive gel for nasal delivery of Sumatriptan. AAPS PharmSciTech. 7:E1–E7 (2006).

    Article  Google Scholar 

  7. Y. Kato, K. Muraki, M. Fujitaka, N. Sakura, and K. Ueda. Plasma concentrations of disodium cromoglycate after various inhalation methods in healthy subjects. Br. J. Clin. Pharmacol. 48:154–157 (1999).

    Article  PubMed  CAS  Google Scholar 

  8. N. Rasenack, H. Steckel, and B. W. Müller. Preparation of microcrystals by in situ micronization. Powder Technol. 143144:291–296 (2004).

    Google Scholar 

  9. H. Steckel, N. Rasenack, and B. W. Müller. In-situ-micronization of disodium cromoglycate for pulmonary delivery. Eur. J. Pharm. Biopharm. 55:173–180 (2003).

    Article  PubMed  CAS  Google Scholar 

  10. M. J. Telko, and A. J. Hickey. Dry powder inhaler formulation. Respir. Care. 50:1209–1227 (2005).

    PubMed  Google Scholar 

  11. C. C. Koch. Nanostructured materials-processing, properties and potential applications. William Andrew Publishing, Norwich, NY, 2002.

    Google Scholar 

  12. A. A. Date, and V. B. Patravale. Current strategies for engineering drug nanoparticles. Curr. Opin. Colloid. In. 9:222–235 (2004).

    Article  CAS  Google Scholar 

  13. G. Nykamp, U. Carstensen, and B. W. Müller. Jet milling-a new technique for microparticle preparation. Int. J. Pharm. 242:79–86 (2002).

    Article  PubMed  CAS  Google Scholar 

  14. M. D. Ticehurst, P. A. Basford, C. I. Dallman, T. M. Lukas, P. V. Marshall, G. Nichols, and D. Smith. Characterisation of the influence of micronisation on the crystallinity and physical stability of revatropate hydrobromide. Int. J. Pharm. 193:247–259 (2000).

    Article  PubMed  CAS  Google Scholar 

  15. K. Brodka-Pfeiffer, P. Langguth, P. Graß, and H. Häusler. Influence of mechanical activation on the physical stability of salbutamol sulphate. Eur. J. Pharm. Biopharm. 56:393–400 (2003).

    Article  PubMed  CAS  Google Scholar 

  16. J. F. Chen, M. Y. Zhou, L. Shao, Y. Y. Wang, J. Yun, N. Y. K. Chew, and H. K. Chan. Feasibility of preparing nanodrugs by high-gravity reactive precipitation. Int. J. Pharm. 269:267–274 (2004).

    Article  PubMed  CAS  Google Scholar 

  17. Z. Wang, J. F. Chen, Y. Le, Z. G. Shen, and J. Yun. Preparation of ultrafine beclomethasone dipropionate drug powder by antisolvent precipitation. Ind. Eng. Chem. Res. 46:4839–4845 (2007).

    Article  CAS  Google Scholar 

  18. X. S. Li, J. X. Wang, Z. G. Shen, P. Y. Zhang, J. F. Chen, and J. Yun. Preparation of uniform prednisolone microcrystals by a controlled mcroprecipitaition method. Int. J. Pharm. 342:26–32 (2007).

    Article  PubMed  CAS  Google Scholar 

  19. J. F. Chen, Y. H. Wang, F. Guo, X. M. Wang, and C. Zheng. Synthesis of nanoparticles with novel technology: high gravity reactive precipitation. Ind. Eng. Chem. Res. 39:948–954 (2000).

    Article  CAS  Google Scholar 

  20. T. Hu, H. Chiou, H. K. Chan, J. F. Chen, and J. Yun. Preparation of inhalable salbutamol sulphate using reactive high gravity controlled precipitation. J. Pharm. Sci. 97:932–937 (2008).

    Google Scholar 

  21. J. Elversson. Spray-dried powders for inhalation—particle formation and formulation concepts. Uppsala University, Sweden, 2005.

    Google Scholar 

  22. H. K. Chan, and N. Y. K. Chew. Novel alternative methods for the delivery of the drugs for the treatment of asthma. Adv. Drug Deliv. Rev. 55:793–805 (2003).

    Article  PubMed  CAS  Google Scholar 

  23. R. Vehring, and W. R. Foss. David Lechuga-Ballesteros. Particle formation in spray drying. J. Aerosol Sci. 38:728–746 (2007).

    Article  CAS  Google Scholar 

  24. J. Y. Zhang, Z. G. Shen, J. Zhong, T. T. Hu, J. F. Chen, Z. Q. Ma, and J. Yun. Preparation of amorphous cefuroxime axetil nanoparticles by controlled nanoprecipitation method without surfactants. Int. J. Pharm. 323:153–160 (2006).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the NSF of China (through Grant NO. 20325621).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Feng Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, ZY., Le, Y., Hu, TT. et al. Production of Ultrafine Sumatriptan Succinate Particles for Pulmonary Delivery. Pharm Res 25, 2012–2018 (2008). https://doi.org/10.1007/s11095-008-9586-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9586-3

KEY WORDS

Navigation