Skip to main content

Advertisement

Log in

A Novel Nanocapsule Delivery System to Overcome Intestinal Degradation and Drug Transport Limited Absorption of P-glycoprotein Substrate Drugs

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To design a double-coated nanoparticulate delivery system of tacrolimus capable of overcoming the P-glycoprotein pump and CYP3A barriers without affecting their physiological activities.

Materials and Methods

Tacrolimus loaded oil cores were first nanoencapsulated with two polymethacrylate polymers followed by the microencapsulation of these nanocapsules within hydroxypropylmethylcellulose using a spray drying technique. The Trojan effect of these double-coated nanocapsules was evaluated in Caco-2 monolayer by monitoring the tacrolimus uptake and measuring the transport of tacrolimus across the rat jejunum membrane.

Results

The formulation was shown to release nanocapsules rather than dissolved drug under sink conditions. The nanocapsules protected tacrolimus from degradation in the diluted intestinal fluids following 2 h incubation. The Caco-2 and intestinal segment uptake of tacrolimus from the novel delivery system with and without verapamil was significantly higher than the uptake of tacrolimus from the aqueous solution and emulsion. The blank drug delivery system did not inhibit the P-gp pump activity. The nanocapsules internalized rapidly in the enterocytes as confirmed by the histological results.

Conclusion

The overall results suggest that the novel nanodelivery system which does not alter the activity of the P-gp is a potential platform for intestinal transport of sensitive lipophilic molecules that are P-gp substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. B. Knight, M. Troutman, and D. R. Thakker. Deconvoluting the effects of P glycoprotein on intestinal CYP3A: a major challenge. Curr. Opin. Pharmacol. 6:528–32 (2006).

    Article  PubMed  CAS  Google Scholar 

  2. L. Z. Benet, C. Y. Wu, M. F. Hebert, and V. J. Wacher. Intestinal drug metabolism and anti-transport processes: a potential paradigm shift in oral drug delivery. J. Control. Release. 39:139–143 (1996).

    Article  CAS  Google Scholar 

  3. V. J. Wacher, L. Salphati, and L. Z. Benet. Active secretion and enterocytic drug metabolism barriers to drug absorption. Adv. Drug Del. Rev. 20:99–112 (1996).

    Article  CAS  Google Scholar 

  4. M. Hennessy, and J. P. Spiers. A primer on the mechanics of P-glycoprotein the multidrug transporter. Pharmacol. Res. 55:1–15 (2007).

    Article  PubMed  CAS  Google Scholar 

  5. T. Yamagata, H. Kusuhara, M. Morishita, K. Takayama, H. Benameur, and Y. Sugiyama. Improvement of the oral drug absorption of topotecan through the inhibition of intestinal xenobiotic efflux transporter, breast cancer resistance protein, by excipients. Drug. Metab. Dispos. 7:1142–1148 (2007).

    Article  CAS  Google Scholar 

  6. P. Breedveld, J. H. Beijnen, and J. H. Schellens. Use of P-glycoprotein and BCRP inhibitors to improve oral bioavailability and CNS penetration of anticancer drugs. Trends Pharmacol. Sci. 1:17–24 (2006).

    Article  CAS  Google Scholar 

  7. K. Y. Win, and S. Feng. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials. 26:2713–2722 (2005).

    Article  PubMed  CAS  Google Scholar 

  8. C. L. Cooper, R. P. van Heeswijk, K. Gallicano, and D. W. Cameron. A review of low dose ritonavir in protease inhibitor combination therapy. Clin. Infect. Dis. 12:1585–92 (2003).

    Article  Google Scholar 

  9. A. Owen, B. Chandler, and D. J. Back. The implications of P-glycoprotein in HIV: friend or foe? Fundam Clin. Pharmacol. 19:283–96 (2005).

    Article  PubMed  CAS  Google Scholar 

  10. P. P. Constantinides, and K. M. Wasan. Lipid formulation strategies for enhancing intestinal transport and absorption of P-glycoprotein (P-gp) substrate drugs: in vitro/in vivo case studies. J. Pharm. Sci. 96:235–48 (2007).

    Article  PubMed  CAS  Google Scholar 

  11. V. Risovic, M. Boyd, E. Choo, and K. M. Wasan. Effects of various lipid-based oral formulations on plasma and tissue amphotericin B concentrations and renal toxicity in male rats. Antimicrob. Agents Chemother. 47:3339–3342 (2003).

    Article  PubMed  CAS  Google Scholar 

  12. B. J. Aungst. Novel formulation strategies for improving oral bioavailability of drugs with poor membrane permeation or presystemic metabolism. J. Pharm. Sci. 82:979 - 986 (1993).

    Article  PubMed  CAS  Google Scholar 

  13. T. Gershanik, and S. Benita. Positively-charged self-emulsifying oil formulation for improving oral bioavailability of progesterone. Pharm. Dev. Technol. 1:147 - 157 (1996).

    Article  PubMed  CAS  Google Scholar 

  14. D. T. O’Hagan, N. M. Christy, and S. S. Davis. Particulates and lymphatic drug delivery. In W. N. Chasmar, and V. J. Stella (eds.), Lymphatic Transport of Drugs, CRC, Boca Raton, FL, 1992, p. 279-315.

    Google Scholar 

  15. N. H. Shah, M. T. Carvajal, C. I. Patel, M. H. Infeld, and A. W. Malick. Self-emulsifying drug delivery systems (SEDDS) with polyglycolized glycerides for improving in vitro dissolution and oral absorption of lipophilic drugs. Int. J. Pharm. 106:15 - 23 (1994).

    Article  CAS  Google Scholar 

  16. D. J. Hauss, S. E. Fogal, J. V. Ficorilli, C. A. Price, T. Roy, A. A. Jayaraj, and J. J. Keirns. Lipid-based delivery systems for improving the bioavailability and lymphatic transport of a poorly water-soluble LTB4 inhibitor. J. Pharm. Sci. 87:164 - 169 (1998).

    Article  PubMed  CAS  Google Scholar 

  17. M. A. Fischl, D. D. Richman, C. Flexner, M. F. Para, R. Jaubrich, A. Karim, P. Yeramian, J. Holden-Wiltse, and P. M. Meehan. Phase I/II study of the toxicity, pharmacokinetics, and activity of the HIV protease inhibitor SC-52151. J. AIDS Hum. Retrovirol. 15:28 - 34 (1997).

    CAS  Google Scholar 

  18. A. Karim, R. Gokhale, M. Cole, J. Sherman, P. Yeramian, M. Bryant, and H. Franke. HIV protease inhibitor SC-52151: a novel method of optimizing bioavailability profile via a microemulsion drug delivery system. Pharm. Res. 11:S368 (1994).

    Google Scholar 

  19. B. Kaplan, K. Lown, R. Craig, M. Abecassis, D. Kaufman, J. Leventhal, F. Stuart, H. U. Meier-Kriesche, and J. Fryer. Low bioavailability of cyclosporine microemulsion and tacrolimus in a small bowel transplant recipient. Transplantation. 67:333–338 (1999).

    Article  PubMed  CAS  Google Scholar 

  20. K. Yokogawa, M. Takahashi, I. Tamai, H. Konishi, M. Nomura, S. Moritani, K. Miyamoto, and A. Tsuji. P-Glycoprotein-dependent disposition kinetics of tacrolimus: studies in mdr1a knockout mice. Pharm. Res. 16:1213–1218 (1999).

    Article  PubMed  CAS  Google Scholar 

  21. H. Saitoh, Y. Saikachi, M. Kobayashi, M. Yamaguchi, M. Oda, Y. Yuhki, K. Achiwa, K. Tadano, Y. Takahashi, and B. J. Aungst. Limited interaction between tacrolimus and P-glycoprotein in the rat small intestine. Eur. J. Pharm. Sci. 28:34–42 (2006).

    Article  PubMed  CAS  Google Scholar 

  22. C. U. Wu, and L. Z. Benet. Predicting drug disposition via application of BCS: transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm. Res. 22:11–23 (2005).

    Article  PubMed  CAS  Google Scholar 

  23. J. Schrickx, and J. Fink-Gremmels. P-glycoprotein-mediated transport of oxytetracycline in the Caco-2 cell model. J. Vet. Pharmacol. Therap. 30:25–31 (2007).

    Article  CAS  Google Scholar 

  24. Y. Gotoh, N. Kamada, and D. Momose. The advantages of the Ussing chamber in drug absorption studies. J. Biomol. Screen. 10:517–523 (2005).

    Article  PubMed  CAS  Google Scholar 

  25. P. Anderle, E. Niederer, W. Rubas, C. Hilgendorf, H. Spahn-Langguth, H. Wunderli-Allenspach, H. P. Merkle, and P. Langguth. P-glycoprotein (P-gp) mediated efflux in Caco-2 cell monolayers: the influence of culturing conditions and drug exposure on P-gp expression levels. J. Pharm. Sci. 87:(6) 757–762 (1998).

    Google Scholar 

  26. K. Manjunath, and V. Venkateswarlu. Pharmacokinetics, tissue distribution and bioavailability of clozapine solid lipid nanoparticles after intravenous and intraduodenal administration. J. Control Release. 107:215–228 (2005).

    Article  PubMed  CAS  Google Scholar 

  27. F. Foger, T. Schmitz, and A. Bernkop-Schnurch. In vivo evaluation of an oral delivery system for P-gp substrates based on thiolated chitosan. Biomaterials. 27:4250–4255 (2006).

    Article  PubMed  CAS  Google Scholar 

  28. H. Fessi, F. Puisieux, J. Devissaguet, N. Ammoury, and S. Benita. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int. J. Pharm. 55:R1–R4 (1989).

    Article  CAS  Google Scholar 

  29. M. M Crowley. Solutions, emulsions, suspensions and extracts. In: Remington: The Science and Practice of Pharmacy (21st edition), Lippincott Williams & Wilkins, Philadelphia, PA, 2005, pp 762

  30. V. C. Furtado Mosqueira, P. Legrand, H. Pinto-Alphandary, F. Puisieux, and G. Barratt. Poly (D,L-Lactide) Nanocapsules prepared by a solvent displacement process: Influence of the composition on physiochemical and structural properties. J. Pharm. Sci. 89:614–626 (2000).

    Article  Google Scholar 

  31. A. M. Calcagno, J. A. Ludwig, J. M. Fostel, M. M. Gottesman, and S. S. V. Ambudkar. Comparison of drug transporter levels in normal colon, colon cancer and Caco-2 cells: impact on drug disposition and discovery. Mol. Pharmacol. 3:87–93 (2006).

    Article  CAS  Google Scholar 

  32. T. Shimada, A. Terada, K. Yokogawa, H. Kaneko, M. Nomura, K. Kaji, S. Kaneko, K. Kobayashi, and K. Miyamoto. Lowered blood concentration of tacrolimus and its recovery with changes in expression of CYP3A and P-glycoprotein after high-dose steroid therapy. Transplantation. 74:1419–1424 (2002).

    Article  PubMed  CAS  Google Scholar 

  33. P. J. Trotter, and J. Storch. Fatty acid esterification during differentiation of the human intestinal cell line Caco-2. J. Biol. Chem. 268:10017–10023 (1993).

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported in part by a grant from the Chief Scientist Office of the Ministry of Trade and Industry (NOFAR program), Jerusalem, Israel and from Nanolymf Ltd., Rosh Ha’ayin, Israel. Simon Benita is affiliated with the David R. Bloom Center for Pharmacy at the Hebrew University of Jerusalem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Benita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nassar, T., Rom, A., Nyska, A. et al. A Novel Nanocapsule Delivery System to Overcome Intestinal Degradation and Drug Transport Limited Absorption of P-glycoprotein Substrate Drugs. Pharm Res 25, 2019–2029 (2008). https://doi.org/10.1007/s11095-008-9585-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9585-4

KEY WORDS

Navigation