Skip to main content
Log in

In VitroIn Vivo Correlation on Delivery of Drug Candidates to Articular Cartilage

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

In the treatment of osteoarthritis (OA), some of the therapeutic approaches require delivery of drug(s) to the diseased cartilage. Presence of adequate drug levels in the cartilage is one of the important criteria in selection and ranking of lead compounds. The purpose of this study was to investigate the correlation in cartilage compound levels between in vitro experiments and in vivo animal studies.

Materials and Methods

Bovine cartilage samples were incubated with test compounds of various concentrations in a culture medium, in the absence or presence of 25 mg/ml of serum albumin which served as an artificial synovial fluid (SF). The test compounds were also dosed to rabbits, the animal model used for efficacy studies, over a six-week treatment period. Test article concentrations in plasma, SF, and cartilage were determined by LC/MS/MS analysis.

Results and Conclusions

A correlation in cartilage drug concentration was observed between in vitro and in vivo studies. Plasma protein binding and the test article’s affinity to cartilage were the major determining factors for drug delivery to cartilage in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Abbreviations

\({\text{AUC}}_{{\text{cartilage}}}^{} \) :

area under the compound concentration-time curve in cartilage

\({\text{AUC}}_{{\text{diseased\_SF}}}^{{\text{unbound}}} \) or \({\text{AUC}}_{{\text{diseased\_SF}}}^{{\text{total}}} \) :

area under the unbound or total compound concentration-time curve in diseased SF

\({\text{AUC}}_{{\text{plasma}}}^{{\text{unbound}}} \) or \({\text{AUC}}_{{\text{serum}}}^{{\text{unbound}}} \) :

area under the unbound compound concentration-time curve in plasma or serum

\({\text{AUC}}_{{\text{SF}}}^{{\text{unbound}}} \)or \({\text{AUC}}_{{\text{SF}}}^{{\text{total}}} \) :

area under the unbound or total compound concentration-time curve in SF

\({\text{AUC}}_{{\text{plasma}}}^{{\text{total}}} \) or \({\text{AUC}}_{{\text{serum}}}^{{\text{total}}} \) :

area under the total compound concentration-time curve in plasma or serum

\(C_{cartilage}^{} \) :

compound concentration in cartilage

\(C_{{\text{plasma}}}^{} \) or \(C_{{\text{plasma}}}^{{\text{total}}} \) or \({}^{{\text{drug}}}C_{{\text{plasma}}}^{{\text{total}}} \) or \(C_{{\text{serum}}}^{} \) or \(C_{{\text{serum}}}^{{\text{total}}} \) :

total compound concentration in plasma or serum

\(C_{{\text{plasma}}}^{{\text{protein}}} \) or \(C_{{\text{serum}}}^{{\text{protein}}} \) :

total protein concentration in plasma or serum

\(C_{{\text{SF}}}^{} \) or \(C_{{\text{SF}}}^{{\text{total}}} \) or \({}^{{\text{drug}}}C_{{\text{SF}}}^{{\text{total}}} \) or \(C_{{\text{healthy\_SF}}}^{{\text{total}}} \) :

total compound concentration in SF

\(C_{{\text{diseased\_SF}}}^{{\text{unbound}}} \) or \(C_{{\text{diseased\_SF}}}^{{\text{total}}} \) :

unbound or total compound concentration in diseased SF

\(C_{{\text{plasma}}}^{{\text{unbound}}} \) or \([C_{{\text{plasma}}} \times \% _{{\text{free}} - {\text{fraction}}} ]\) or \(C_{{\text{serum}}}^{{\text{unbound}}} \) :

unbound compound concentration in plasma or serum

\(C_{{\text{SF}}}^{{\text{unbound}}} \) or \({}^{{\text{drug}}}C_{{\text{SF}}}^{{\text{unbound}}} \) or \(C_{{\text{healthy\_SF}}}^{{\text{unbound}}} \) :

unbound compound concentration in synovial fluid (SF)

\({}^{{\text{drug}}}C_{{\text{SF}}}^{{\text{bound\_to\_proteins}}} \) or \({}^{{\text{drug}}}C_{{\text{plasma}}}^{{\text{bound\_to\_proteins}}} \) :

SF or plasma compound concentrations that associated with SF or plasma proteins

%free-fraction :

percentage of unbound compound in plasma

SF:

synovial fluid

References

  1. J.M. Milner, and T.E. Cawston. Matrix metalloproteinase knockout studies and the potential use of matrix metalloproteinase inhibitors in the rheumatic diseases. Curr. Drug Targets Inflamm. Allergy. 4(3):363–375 (2005).

    Article  PubMed  CAS  Google Scholar 

  2. J. Martel-Pelletier, D.J. Welsch, and J-P. Pelletier. Metalloproteases and inhibitors in arthritic diseases. Best Pract. Res. Clin. Rheumatol. 15(5):805–829 (2001).

    Article  PubMed  CAS  Google Scholar 

  3. S.S. Glasson, R. Askew, B. Sheppard, B. Carito, T. Blanchet, H-L. Ma, C.R. Flannery, D. Peluso, K. Kanki, Z. Yang, M.K. Majumdar, and E.A. Morris. Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature. 434:644–648 (2005).

    Article  PubMed  CAS  Google Scholar 

  4. H. Nagase, and M. Kashiwagi. Aggrecanases and cartilage matrix degradation. Arthritis Res. Ther. 5(2):94–103 (2003).

    Article  PubMed  CAS  Google Scholar 

  5. J.W. Skiles, N.C. Gonnella, and A.Y. Jeng. The design, structure, and clinical update of small molecular weight matrix metalloproteinase inhibitors. Curr Med Chem. 11(22):2911–2977 (2004).

    PubMed  CAS  Google Scholar 

  6. M. Sabatini, C. Lesur, M. Thomas, A. Chomel, P. Anract, G. de Nanteuil, and P. Pastoureau. Effect of inhibition of matrix metalloproteinases on cartilage loss in vitro and in a guinea pig model of osteoarthritis. Arthritis Rheum. 52(1):171–180 (2005).

    Article  PubMed  CAS  Google Scholar 

  7. T.G. Benedek. A history of the understanding of cartilage. OsteoArthr. Cartil. 14:203–209 (2006).

    Article  PubMed  CAS  Google Scholar 

  8. H. Imhof, M. Breitnseher, F. Kainberger, and S. Trattnig. Degenerative joint disease: cartilage or vascular disease? Skelet. Radiol. 26:398–403 (1997).

    Article  CAS  Google Scholar 

  9. J.E. Shea, and S.C. Miller. Skeletal function and structure: implication of tissue-targeted therapeutics. Adv. Drug Deliv. Rev. 57:945–957 (2005).

    Article  PubMed  CAS  Google Scholar 

  10. J. Li, T.S. Rush III, W. Li, D. DeVincentis, X. Du, Y. Hu, J.R. Thomason, J.S. Xiang, J.S. Skotnicki, and S. Tam. Synthesis and SAR of highly selective MMP-13 inhibitors. Bioorg. Med. Chem. Lett. 15:4961–4966 (2005).

  11. Y. Hu, J. Xiang, M. DiGrandi, X. Du, M. Ipek, L. Laakso, J. Li, W. Li, T. Rush, J. Schmid, J. Skotnicki, S. Tam, J. Thomason, Q. Wang, and J. Levin. Potent, selective and orally bioavailable matrix metalloproteinase-13 inhibitors for the treatment of osteoarthritis. Bioorg. Med. Chem. 13:6629–6644 (2005).

    Article  PubMed  CAS  Google Scholar 

  12. R.A. Gatter, and H.R. Schumacher. A practical handbook of joint fluid analysis, 2nd edition. Lea & Febiger, Philadelphia, 1991, pp. 70–77.

    Google Scholar 

  13. D.J. McCarty. The physiology of normal synovium. In L. Sokoloff (ed.), The Joints and Synovial Fluid, Vol. II, Chapter 7, Academic, New York, 1980, pp. 294–315.

    Google Scholar 

  14. P.S. MacWilliams, and K.R. Friedrichs. Laboratory evaluation and interpretation of synovial fluid. Vet. Clin. Small. Anim. 33:153–178 (2003).

    Article  Google Scholar 

  15. B. Davis, and T. Morris. Physiological parameters in laboratory animals and humans. Pharm. Res. 10:1093–1096 (1993).

    Article  Google Scholar 

  16. P.A. Simkin, M.P. Wu, and D.M. Foster. Articular pharmacokinetics of protein-bound anti-rheumatic agents. Clin. Pharmacokinet. 25:342–50 (1993).

    PubMed  CAS  Google Scholar 

  17. W.F. Elmquist, K.K.H. Chan, and R.J. Sawchuck. Transsynovial drug distribution: synovial mean transit time of diclofenac and other nonsteroidal anti-inflammatory drugs. Pharm. Res. 11:1689–1697 (1994).

    Article  PubMed  CAS  Google Scholar 

  18. S.G. Owen, H.W. Francis, and M.S. Roberts. Disappearance kinetics of solutes from synovial fluid after intra-articular injection. Br. J. Clin. Pharmacol. 38:349–355 (1994).

    PubMed  CAS  Google Scholar 

  19. P. Netter, B. Bannwarth, and M-J. Rojer-Morrot. Recent finding on the pharmacokinetics of non-steriodal anti-inflammatory drugs in synovial fluid. Clin. Pharmacokinet. 17(3):145–162 (1989).

    Article  PubMed  CAS  Google Scholar 

  20. R.O. Day, A.J. McLachlan, G.G. Graham, and K.M. Williams. Pharmacokinetics of nonsteroidal anti-inflammatory drugs in synovial fluid. Clin Pharmacokinet. 36(3):191–210 (1999).

    Article  PubMed  CAS  Google Scholar 

  21. F. Lapicque, P. Vergne, J.Y. Jouzeau, D. Loeuille, P. Gillet, E. Vignon, P. Thomas, P. Velicitat, D. Turck, C. Guillaume, A. Gaucher, P. Bertin, and P. Netter. Articular diffusion of meloxicam after a single oral dose: relationship to cyclo-oxygenase inhibition in synovial cells. Clin. Pharmacokinet. 39(5):369–82 (2000).

    Article  PubMed  CAS  Google Scholar 

  22. O.G. Nilsen. Clinical pharmacokinetics of tenoxicam. Clin. Pharmacokinet. 24:16–43 (1994).

    Google Scholar 

  23. S.X. Peng, E.C. von Bargen, D.M. Bornes, and S. Pikul. Permeability of articular cartilage to matrix metalloprotease inhibitors. Pharm. Res. 15:1414–1418 (1998).

    Article  PubMed  CAS  Google Scholar 

  24. R.C. Evens, and T.M. Quinn. Solute diffusivity correlates with mechanical properties and matrix density of compressed articular cartilage. Arch. Biochem. biophys. 442:1–10 (2005).

    Article  CAS  Google Scholar 

  25. J.H. Kimura. The role of water, proteoglycan, and collagen in solute transport in cartilage. In K.E. Kuettner (ed.), Articular Cartilage and Osteoarthritis, Raven, New York, 1991, pp. 355–372.

    Google Scholar 

  26. A.M. Garcia, E.H. Frank, P.E. Grimshaw, and A.J. Grodzinsky. Contributions of fluid convection and electrical migration to transport in cartilage: relevance to loading. Arch. Biochem. Biophys. 333:317–325 (1996).

    Article  PubMed  CAS  Google Scholar 

  27. F. Eckstein, M. Tieschky, S.C. Faber, M. Haubner, H. Kolem, K-H. Endlmeier, and M. Reiser. Effect of physical exercise on cartilage volume and thickness in vivo: MR imaging study. Radiology. 207:243–248 (1998).

    PubMed  CAS  Google Scholar 

  28. U.G. Kersting, J.J. Stubendorff, M.C. Schmidt, and G-P. Bruggemann. Changes in knee cartilage volume and serum COMP concentration after running exercise. Osteoarthr. Cartil. 13:925–934 (2005).

    Article  PubMed  Google Scholar 

  29. M. Kurowski, and A. Dunky. Transsynovial kinetics of piroxicam in patients with rheumatoid arthritis. Eur. J. Clin. Pharmacol. 34:401–406 (1998).

    Article  Google Scholar 

  30. J.B. Whitiam, K.F. Brown, M.J. Crooks, and G.F.W. Room. Transsynovial distribution of ibuprofen in arthritis patients. Clin. Pharmacol. Ther. 29:487–492 (1981).

    Google Scholar 

  31. R.O. Day, H. Francis, J. Vial, G. Geisslinger, and K.M. Williams. Naproxen concentrations in plasma and synovial fluid and effects on prostanoid concentrations. J. Rheumatol. 22(12):2295–30 (1995).

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Jessica Doherty, Cindy Clark, Amy Ignatowicz, Terrie Cunliffe-Beamer, and Glen Pedneault for performing in vivo studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Q., Glasson, S., Raut, U. et al. In VitroIn Vivo Correlation on Delivery of Drug Candidates to Articular Cartilage. Pharm Res 25, 1641–1646 (2008). https://doi.org/10.1007/s11095-008-9557-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9557-8

Key words

Navigation