Skip to main content

Advertisement

Log in

Optimisation of the Caco-2 Permeability Assay Using Experimental Design Methodology

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

This study used a Box-Behnken experimental design to optimise the experimental conditions in the Caco-2 assay for a series of p-hydroxybenzoate ester compounds (log P 1.96–5.69), as highly lipophilic compounds are not handled well in this system.

Methods

Caco-2 cells, passage 55–70, were cultured on Transwell™ cell culture supports and permeability assays were performed on day 21. A three level three factorial experimental design was used to optimise the experimental conditions.

Results

Addition of BSA (4% w/v) in the medium increased the apparent permeability coefficients (Papp) of each of the parabens except the octyl ester. Increasing the stirring rate by 100 rpm increased Papp for all the parabens. Use of simulated intestinal fluid either increased (fasted state) or decreased (fed state) the Papp of methyl–butyl parabens.

Conclusions

The optimised conditions were; 1.55% w/v BSA, 215 rpm stirring rate and 3.02 mM sodium taurocholate in the simulated intestinal fluid; where octyl paraben (log P 5.69) had an Papp of 33.93 ± 1.84 × 10−6 cm/s, reflecting its rapid absorption in man. This study provides a systematic optimisation of the Caco-2 permeability assay to avoid the underestimation of the intestinal permeability of compounds with log P > 3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. P. Artursson, K. Palm, and K. Luthman. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv. Drug Deliv. Rev. 46:27–43 (2001).

    Article  PubMed  CAS  Google Scholar 

  2. L. S. Gan, and D. R. Thakker. Applications of the Caco-2 model in the design and development of orally active drugs: elucidation of biochemical and physical barriers posed by the intestinal epithelium. Adv. Drug Deliv. Rev. 23:77–98 (1997).

    Article  CAS  Google Scholar 

  3. S. Yee. In vitro permeability across Caco-2 cells (colonic) can predict in vivo (small intestinal) absorption in man—fact or myth. Pharm. Res. 14:763–766 (1997).

    Article  PubMed  CAS  Google Scholar 

  4. V. Pade, and S. Stavchansky. Link between drug absorption solubility and permeability measurements in Caco-2 cells. J. Pharm. Sci. 87:1604–1607 (1998).

    Article  PubMed  CAS  Google Scholar 

  5. B. Angelova, and H-P. Schmauder. Lipophilic compounds in biotechnology—interactions with cells and technological problems. J. Biotechnol. 67:13–32 (1999).

    Article  PubMed  CAS  Google Scholar 

  6. P. Augustijns, P. Annaert, P. Hevlen, G. Van der Mooter, and R. Kinget. Drug absorption studies of prodrug esters using the Caco-2 model: evaluation of ester hydrolysis and transepithelial transport. Int. J. Pharm. 166:45–53 (1998).

    Article  CAS  Google Scholar 

  7. G. A. Sawada, N. F. H. Ho, L. R. Williams, C. L. Barsuhn, and T. J. Raub. Transcellular permeability of chlorpromazine demonstrating the roles of protein binding and membrane partitioning. Pharm. Res. 11:665–673 (1994).

    Article  PubMed  CAS  Google Scholar 

  8. A. Avdeef, P. E. Nielsen, and O. Tsinman. PAMPA—a drug absorption in vitro model 11. Matching the in vivo unstirred water layer thickness by individual-well stirring in microtitre plates. Eur. J. Pharm. Sci. 22:365–374 (2004).

    PubMed  CAS  Google Scholar 

  9. C. M. Meaney, and C. M. O’Driscoll. A comparison of the permeation enhancement potential of simple bile salt and mixed bile salt:fatty acid micellar systems using the CaCo-2 cell culture model. Int. J. Pharm. 207:21–30 (2000).

    Article  PubMed  CAS  Google Scholar 

  10. F. Ingels, S. Deferme, E. Destexhe, M. Oth, G. Van den Mooter, and P. Augustijns. Simulated intestinal fluid as transport medium in the Caco-2 cell culture model. Int. J. Pharm. 232:183–192 (2002).

    Article  PubMed  CAS  Google Scholar 

  11. F. Ingels, B. Beck, M. Oth, and P. Augustijns. Effect of simulated intestinal fluid on drug permeability estimation across Caco-2 monolayers. Int. J. Pharm. 232:221–232 (2004).

    Article  Google Scholar 

  12. N. Patel, S. Eskola, J. Murray, and B. Forbes. Use of simulated intestinal fluids with Caco-2 cells and rat ileum in Ussing chambers. Drug Dev. Ind. Pharm. 32:151–161 (2006).

    Article  PubMed  CAS  Google Scholar 

  13. J. Karlsson, and P. Artursson. A method for the determination of cellular permeability coefficients and aqueous boundary layer thickness in monolayers of intestinal epithelial (Caco-2) cells grown in permeable filter chambers. Int. J. Pharm. 71:55–64 (1991).

    Article  CAS  Google Scholar 

  14. B. J. Aungst, N. H. Nguyen, J. P. Bulgarelli, and K. Oates-Lenz. The influence of donor and reservoir additives on Caco-2 permeability and secretory transport of HIV protease inhibitors and other lipophilic compounds. Pharm. Res. 17:1175–1180 (2000).

    Article  PubMed  CAS  Google Scholar 

  15. G. Krishna, K-J. Chen, C-C. Lin, and A. A. Nomeir. Permeability of lipophilic compounds in drug discovery using in-vitro human absorption model, Caco-2. Int. J. Pharm. 222:77–89 (2001).

    Article  PubMed  CAS  Google Scholar 

  16. P. Saha, and J. H. Kou. Effect of bovine serum albumin on drug permeability estimation across Caco-2 monolayers. Eur. J. Pharm. Biopharm. 54:319–324 (2002).

    Article  PubMed  CAS  Google Scholar 

  17. Y. Nakagawa, and P. Moldeus. Mechanism of p-hydroxybenzoate ester-induced mitochondrial dysfunction and cytotoxicity in isolated rat hepatocytes. Biochem. Pharmacol. 55:1907– 1914 (1998).

    Article  PubMed  CAS  Google Scholar 

  18. E. J. Routledge, J. Parker, J. Odum, J. Ashby, and J. P. Sumpter. Some alkyl hydroxy benzoate preservatives (parabens) are estrogenic. Toxicol. Appl. Pharmacol. 153:12–19 (1998).

    Article  PubMed  CAS  Google Scholar 

  19. P. D. Darbre, A. Aljarrah, W. R. Miller, N. G. Coldham, M. J. Sauer, and G. S. Pope. Concentrations of parabens in human breast tumours. J. Appl. Toxicol. 24:5–13 (2004).

    Article  PubMed  CAS  Google Scholar 

  20. R. Golden, J. Gandy, and G. Vollmer. A review of the endocrine activity of parabens and implications for potential risks to human health. Crit. Rev. Toxicol. 35:435–458 (2005).

    Article  PubMed  CAS  Google Scholar 

  21. R. Ragonese, M. Macka, J. Hughes, and P. Petocz. The use of Box-Behnken experimental design in the optimisation and robustness testing of a capillary electrophoresis method for the analysis of ethambutol hydrochloride in pharmaceutical formulation. J. Pharm. Biomed. Anal. 27:995–1007 (2002).

    Article  PubMed  CAS  Google Scholar 

  22. M. Lakeram, D. J. Lockley, D. J. Sanders, R. Pendlington, and B. Forbes. Paraben transport and metabolism in the biomimetic artificial membrane permeability assay (BAMPA) and 3-day and 21-day Caco-2 cell systems. J. Biomol. Screen 12:84–91 (2007).

    Article  PubMed  CAS  Google Scholar 

  23. K. S. Singh, J. Dodge, M. J. Durrani, and M. A. Khan. Optimisation and characterisation of controlled release pellets coated with an experimental latex. I. Anionic drug. Int. J. Pharm. 125:243–255 (1995).

    Article  CAS  Google Scholar 

  24. A. A. Karnschi and M. A. Khan. Box-Behnken design for optimisation of formulation variables of indomethacin coprecipitates with polymer mixtures. Int. J. Pharm. 131:9–17 (1996).

    Article  Google Scholar 

  25. P. Artursson. Epithelial transport of drugs in cell culture. I. A model for studying the passive diffusion of drugs over intestinal absorptive (Caco-2) cells. J. Pharm. Sci. 79:476–482 (1990).

    Article  PubMed  CAS  Google Scholar 

  26. P. Wils, A. Warnery, V. Phung-Ba, S. Legrain, and D. Scherman. High lipophilicity decreases drug transport across intestinal epithelial cells. J. Pharmacol. Exp. Ther. 269:654–658 (1994).

    PubMed  CAS  Google Scholar 

  27. H. Lennernas. Human intestinal permeability. J. Pharm. Sci. 87:403–410 (1998).

    Article  PubMed  CAS  Google Scholar 

  28. I. J. Hidalgo, K. M. Hillgren, G. M. Grass, and R. T. Borchardt. Characterisation of the unstirred water layer in Caco-2 cell monolayers using novel diffusion apparatus. Pharm. Res. 8:222–227 (1991).

    Article  PubMed  CAS  Google Scholar 

  29. K. Naruhashi, I. Tamai, Q. Li, Y. Sai, and A. Tsuji. Experimental demonstration of the unstirred water layer effect on drug transport in Caco-2 cells. J. Pharm. Sci. 92:1502–1508 (2003).

    Article  PubMed  CAS  Google Scholar 

  30. C. K. Pease, J. Kino-Thompson, D. Sanders, R. U. Pendlington, M. York, A. McEwan, S. G. Wood, A. Peters, D. Griffiths, G. Ford, and K. Dummer. Biokinetic equivalence of propylparaben and octylparaben: in vitro metabolism data and single dose oral administration study in man. Drug Metab. Rev. 38:S1 (2006).

    Google Scholar 

Download references

Acknowledgements

Mark Lakeram was funded by a Biotechnology and Biological Sciences Research Council CASE award and Unilever Colworth, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Forbes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lakeram, M., Lockley, D.J., Pendlington, R. et al. Optimisation of the Caco-2 Permeability Assay Using Experimental Design Methodology. Pharm Res 25, 1544–1551 (2008). https://doi.org/10.1007/s11095-008-9556-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9556-9

Key words

Navigation