Skip to main content
Log in

Mechanistic Analysis of Chemical Permeation Enhancers for Oral Drug Delivery

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Traditionally, the oral route cannot be employed for the delivery of macromolecular drugs such as proteins and peptides due, in large part, to limited transport across the epithelial membrane. This particular challenge can potentially be addressed through the use of chemical permeation enhancers, which affect transcellular and/or paracellular transport routes. Although certain permeation enhancers have been proposed for use in oral delivery, potential for application is often unclear when the route of enhancer action is unknown.

Methods

A combination of theory and experiments was developed for determining mechanism of enhancer action. The effect of 51 enhancers on Caco-2 cells was studied using TEER, MTT, and LDH assays.

Results

The mechanistic details of intestinal permeability enhancement were uncovered for a broad set of enhancers in vitro. Understanding gained from enhancer mechanisms enabled the deduction of structure–function relationships for hydrophilic and hydrophobic permeation enhancers as well as the identification of a transcellular enhancer, 0.01% (w/v) palmityldimethyl ammonio propane sulfonate, which enabled the non-cytotoxic intracellular delivery of a model drug.

Conclusions

The results presented here emphasize the importance of understanding enhancer mechanism and uncover a zwitterionic surfactant capable of safely and effectively achieving intraepithelial drug delivery in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

EP:

Enhancement potential

K:

Mechanistic parameter

LDH:

Lactate dehydrogenase

Log P:

Water-octanol partion coefficient

LP:

LDH potential

MTT:

Methyl thiazole tetrazolium

PPS:

Palmityldimethyl ammonio propane sulfonate

TEER:

Transepithelial electrical resistance

TP:

Toxicity potential

References

  1. S. K. Kim, D. Y. Lee, E. Lee, Y.-k. Lee, C. Y. Kim, H. T. Moon, and Y. Byun. Absorption study of deoxycholic acid–heparin conjugate as a new form of oral anti-coagulant. J. Control. Rel. 120:4–10 (2007).

    Article  CAS  Google Scholar 

  2. K. M. Wood, G. Stone, and N. A. Peppas. Lectin functionalized complexation hydrogels for oral protein delivery. J. Control. Rel. 116:e66–e68 (2006).

    Article  CAS  Google Scholar 

  3. M. Goldberg, and I. Gomez-Orellana. Challenges for the oral delivery of macromolecules. Nat. Rev. Drug. Discov. 2:289–295 (2003).

    Article  PubMed  CAS  Google Scholar 

  4. B. J. Aungst. Intestinal permeation enhancers. J. Pharm. Sci 89:429–442 (2000).

    Article  PubMed  CAS  Google Scholar 

  5. N. N. Salama, N. D. Eddington, and A. Fasano. Tight junction modulation and its relationship to drug delivery. Adv. Drug. Deliv. Rev. 58:15–28 (2006).

    Article  PubMed  CAS  Google Scholar 

  6. D. Bourdet, G. Pollack, and D. Thakker. Intestinal absorptive transport of the hydrophilic cation ranitidine: A kinetic modeling approach to elucidate the role of uptake and efflux transporters and paracellular vs. transcellular transport in Caco-2 cells. Pharm. Res. 23:1178–1187 (2006).

    Article  PubMed  CAS  Google Scholar 

  7. S. Maher, L. Feighery, D. Brayden, and S. McClean. Melittin as an epithelial permeability enhancer I: Investigation of its mechanism of action in Caco-2 monolayers. Pharm. Res. 24:1336–1345 (2007).

    Article  PubMed  CAS  Google Scholar 

  8. C. M. Meaney, and C. M. O’Driscoll. A comparison of the permeation enhancement potential of simple bile salt and mixed bile salt: Fatty acid micellar systems using the Caco-2 cell culture model. Int. J. Pharm. Sci. 207:21–30 (2000).

    Article  CAS  Google Scholar 

  9. T. Shimazaki, M. Tomita, S. Sadahiro, M. Hayashi, and S. Awazu. Absorption-enhancing effects of sodium caprate and palmitoyl carnitine in rat and human colons. Dig. Dis. Sci. 43:641–645 (1998).

    Article  PubMed  CAS  Google Scholar 

  10. S. M. van der Merwe, J. C. Verhoef, J. H. M. Verheijden, A. F. Kotze, and H. E. Junginger. Trimethylated chitosan as polymeric absorption enhancer for improved peroral delivery of peptide drugs. Eur. J. Pharm. Biopharm. 58:225–235 (2004).

    Article  PubMed  Google Scholar 

  11. A. C. Chao, J. V. Nguyen, M. Broughall, J. Recchia, C. R. Kensil, P. E. Daddona, and J. A. Fix. Enhancement of intestinal model compound transport by DS-1, a modified Quillaja saponin. J. Pharm. Sci. 87:1395–1399 (1998).

    Article  PubMed  CAS  Google Scholar 

  12. T. Suzuki, and H. Hara. Difructose anhydride III and sodium caprate activate paracellular transport via different intracellular events in Caco-2 cells. Life Sciences 79:401–410 (2006).

    Article  PubMed  CAS  Google Scholar 

  13. E. Duizer, C. Van Der Wulp, C. H. M. Versantvoort, and J. P. Groten. Absorption enhancement, structural changes in tight junctions and cytotoxicity caused by palmitoyl carnitine in Caco-2 and IEC-18 cells. J. Pharmacol. Exp. Ther. 287:395–402 (1998).

    PubMed  CAS  Google Scholar 

  14. S. Hess, V. Rotshild, and A. Hoffman. Investigation of the enhancing mechanism of sodium n-[8-(2-hydroxybenzoyl)amino]caprylate effect on the intestinal permeability of polar molecules utilizing a voltage clamp method. Eur. J. Pharm. Sci. 25:307–312 (2005).

    PubMed  CAS  Google Scholar 

  15. T. Uchiyama, T. Sugiyama, Y. S. Quan, A. Kotani, N. Okada, T. Fujita, S. Muranishi, and A. Yamamoto. Enhanced permeability of insulin across the rat intestinal membrane by various absorption enhancers: Their intestinal mucosal toxicity and absorption-enhancing mechanism of n-lauryl-beta-D-maltopyranoside. J. Pharm. Pharmacol. 51:1241–1250 (1999).

    Article  PubMed  CAS  Google Scholar 

  16. P. Sharma, M. V. S. Varma, H. P. S. Chawla, and R. Panchagnula. Relationship between lipophilicity of BCS class III and IV drugs and the functional activity of peroral absorption enhancers. Il Farmaco. 60:870–873 (2005).

    Article  PubMed  CAS  Google Scholar 

  17. A. A. Raoof, Z. Ramtoola, B. McKenna, R. Z. Yu, G. Hardee, and R. S. Geary. Effect of sodium caprate on the intestinal absorption of two modified antisense oligonucleotides in pigs. Eur. J. Pharm. Sci. 17:131–138 (2002).

    Article  PubMed  CAS  Google Scholar 

  18. T. W. Leonard, J. Lynch, M. J. McKenna, and D. J. Brayden. Promoting absorption of drugs in humans using medium-chain fatty acid-based solid dosage forms: GIPET. Expert. Opin. Drug Deliv. 3:685–692 (2006).

    Article  PubMed  CAS  Google Scholar 

  19. E. K. Anderberg, T. Lindmark, and P. Artursson. Sodium caprate elicits dilatations in human intestinal tight junctions and enhances drug absorption by the paracellular route. Pharm. Res. 10:857–864 (1993).

    Article  PubMed  CAS  Google Scholar 

  20. J. D. Soderholm, H. Oman, L. Blomquist, J. Veen, T. Lindmark, and G. Olaison. Reversible increase in tight junction permeability to macromolecules in rat ileal mucosa in vitro by sodium caprate, a constituent of milk fat. Dig. Dis. Sci. 43:1547–1552 (1998).

    Article  PubMed  CAS  Google Scholar 

  21. M. Tomita, M. Hayashi, T. Horie, T. Ishizawa, and S. Awazu. Enhancement of colonic drug absorption by the transcellular permeation route. Pharm. Res. 5:786–789 (1988).

    Article  PubMed  CAS  Google Scholar 

  22. P. Sharma, M. V. S. Varma, H. P. S. Chawla, and R. Panchagnula. In situ and in vivo efficacy of peroral absorption enhancers in rats and correlation to in vitro mechanistic studies. Il Farmaco. 60:874–883 (2005).

    Article  PubMed  CAS  Google Scholar 

  23. M. Sakai, T. Imai, H. Ohtake, H. Azuma, and M. Otagiri. Effects of absorption enhancers on the transport of model compounds in Caco-2 cell monolayers: Assessment by confocal laser scanning microscopy. J. Pharm. Sci. 86:779–785 (1997).

    Article  PubMed  CAS  Google Scholar 

  24. M. Tomita, M. Hayashi, and S. Awazu. Absorption-enhancing mechanism of EDTA, caprate, and decanoylcarnitine in Caco-2 cells. J. Pharm. Sci. 85:608–611 (1996).

    Article  PubMed  CAS  Google Scholar 

  25. E. Fuller, C. Duckham, and E. Wood. Disruption of epithelial tight junctions by yeast enhances the paracellular delivery of a model protein. Pharm. Res. 24:37–47 (2007).

    Article  PubMed  CAS  Google Scholar 

  26. K. Whitehead, N. Karr, and S. Mitragotri. Safe and effective enhancers for oral drug delivery. Pharm Res. in press. DOI 10.1007/s11095-007-9488-9.

  27. N. A. Motlekar, K. S. Srivenugopal, M. S. Wachtel, and B.-B. C. Youan. Oral delivery of low-molecular-weight heparin using sodium caprate as absorption enhancer reaches therapeutic levels. J. Drug Target 13:573–583 (2005).

    Article  PubMed  CAS  Google Scholar 

  28. B. Aspenstrom-Fagerlund, L. Ring, P. Aspenstrom, J. Tallkvist, N.-G. Ilback, and A. W. Glynn. Oleic acid and docosahexaenoic acid cause an increase in the paracellular absorption of hydrophilic compounds in an experimental model of human absorptive enterocytes. Toxicology 237:12–23 (2007).

    Article  PubMed  Google Scholar 

  29. G. Fotakis, and J. A. Timbrell. in vitro cytotoxicity assays: Comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol. Let. 160:171–177 (2006).

    Article  CAS  Google Scholar 

  30. E. S. Swenson, and W. Curatolo. Intestinal permeability enhancement for proteins, peptides, and other polar drugs: Mechanisms and potential toxicity. Adv. Drug Deliv. Rev. 8:39–92 (1992).

    Article  CAS  Google Scholar 

  31. W. P. Soutter, P. Sasieni, and T. Panoskaltsis. Long-term risk of invasive cervical cancer after treatment of squamous cervical intraepithelial neoplasia. Int. J. Cancer 118:2048–2055 (2006).

    Article  PubMed  CAS  Google Scholar 

  32. C. Pilette, B. Colinet, R. Kiss, S. Andre, H. Kaltner, H. J. Gabius, M. Delos, J. P. Vaerman, M. Decramer, and Y. Sibille. Increased galectin-3 expression and intraepithelial neutrophils in small airways in severe chronic obstructive pulmonary disease. Eur. Respir. J. 29:914-922 (2007). DOI 09031936.00073005.

    Google Scholar 

  33. K. Ishida, M. Takaai, and Y. Hashimoto. Pharmacokinetic analysis of transcellular transport of quinidine across monolayers of human intestinal epithelial Caco-2 cells. Biol. Pharm. Bull. 29:522–526 (2006).

    Article  PubMed  CAS  Google Scholar 

  34. A. Fasano, and J. P. Nataro. Intestinal epithelial tight junctions as targets for enteric bacteria-derived toxins. Adv. Drug Deliv. Rev. 56:795–807 (2004).

    Article  PubMed  CAS  Google Scholar 

  35. T. Lindmark, T. Nikkila, and P. Artursson. Absorption enhancement through intracellular regulation of tight junction permeability by medium chain fatty acids in Caco-2 cells. J. Pharmacol. Exp. Ther. 284:362–369 (1998).

    PubMed  CAS  Google Scholar 

  36. A. Marin, H. Sun, G. A. Husseini, W. G. Pitt, D. A. Christensen, and N. Y. Rapoport. Drug delivery in pluronic micelles: Effect of high-frequency ultrasound on drug release from micelles and intracellular uptake. J. Control. Rel. 84:39–47 (2002).

    Article  CAS  Google Scholar 

  37. D. M. Hallow, A. D. Mahajan, and M. R. Prausnitz. Ultrasonically targeted delivery into endothelial and smooth muscle cells in ex vivo arteries. J. Control. Rel. 118:285–293 (2007).

    Article  CAS  Google Scholar 

  38. E. B. Ghartey-Tagoe, J. S. Morgan, K. Ahmed, A. S. Neish, and M. R. Prausnitz. Electroporation-mediated delivery of molecules to model intestinal epithelia. Int. J. Pharm. Sci. 270:127–138 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a fellowship to KW from the Graduate Research and Education in Adaptive bio-Technology (GREAT) Training Program by the University of California Biotechnology Research and Education Program and by the American Diabetes Association. The authors would also like to thank Natalie Karr for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Mitragotri.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material

(DOC 360 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whitehead, K., Mitragotri, S. Mechanistic Analysis of Chemical Permeation Enhancers for Oral Drug Delivery. Pharm Res 25, 1412–1419 (2008). https://doi.org/10.1007/s11095-008-9542-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9542-2

Key words

Navigation