Pharmaceutical Research

, Volume 25, Issue 6, pp 1290–1296 | Cite as

Increased Intestinal Delivery of Viable Saccharomyces boulardii by Encapsulation in Microspheres

  • Sandrine Graff
  • Sajjad Hussain
  • Jean-Claude Chaumeil
  • Christine Charrueau
Research Paper

Abstract

Purpose

Although probiotics are of a major potential therapeutic interest, their efficacy is usually limited by poor bioavailability of viable microorganisms on site. The aim of this study was to protect the probiotic Saccharomyces boulardii from degradation in order to ensure a greater number of viable yeast in the colon.

Methods

Alginate microspheres coated with or not with chitosan were used to encapsulate the yeast by an extrusion method. The efficiency of encapsulation was assessed both in vitro and in vivo.

Results

In vitro, less than 1% of the non-encapsulated probiotic survived after 120 min at pH 1.1, whereas the majority of encapsulated yeast cells remained entrapped within both types of microspheres. Further exposure to a pH 6.8 allowed the release of about 35% of viable yeasts. In vivo, the percentage of viable yeast excreted over 96 h after a single oral dose of 2 × 108 cfu/100 g in rats was 2.5% for non-encapsulated yeast and reached 13.3 and 9.0% of the dose administered for the uncoated and chitosan-coated microspheres, respectively.

Conclusions

Given the dose-dependent efficacy of S. boulardii and the efficiency of microencapsulation in protecting the yeast from degradation, alginate microspheres could be of great interest in therapeutic applications of the yeast.

Keywords

alginate gastrointestinal transit microspheres probiotic Saccharomyces boulardii 

Abbreviations

CCM

Chitosan-coated microspheres

ED

Equivalent diameter

FD

Freeze-dried yeast

SF

Shape factor

UM

Uncoated microspheres

Notes

Acknowledgments

This work was supported by Biocodex, France. The authors acknowledge Pr M. J. Butel and her team for free access to the Microbiology Laboratory, Université Paris Descartes, Dr G. Dumortier and Dr P. Boy for their contribution to the statistical analysis of the data, and Pr L. Cynober for his thoughtful comments and sound advice.

References

  1. 1.
    S. Ghosh, D. van Heel, and R. J. Playford. Probiotics in inflammatory bowel disease: is it all gut flora modulation? Gut. 53:620–622 (2004).PubMedCrossRefGoogle Scholar
  2. 2.
    P. Gionchetti, F. Rizzello, U. Helwig, A. Venturi, K. M. Lammers, P. Brigidi, B. Vitali, G. Poggioli, M. Miglioli, and M. Campieri. Prophylaxis of pouchitis onset with probiotic therapy: a double-blind, placebo-controlled trial. Gastroenterology. 124:1202–1209 (2003).PubMedCrossRefGoogle Scholar
  3. 3.
    T. Mimura, F. Rizzello, U. Helwig, G. Poggioli, S. Schreiber, I. C. Talbot, R. J. Nicholls, P. Gionchetti, M. Campieri, and M. A. Kamm. Once daily high dose probiotic therapy (VSL#3) for maintaining remission in recurrent or refractory pouchitis. Gut. 53:108–114 (2004).PubMedCrossRefGoogle Scholar
  4. 4.
    E. Bergogne-Berezin. Ecologic impact of antibiotherapy. Role of substitution microorganisms in the control of antibiotic-related diarrhea and colitis. Presse Med. 24:145–156 (1995).PubMedGoogle Scholar
  5. 5.
    J. P. Buts, G. Corthier, and M. Delmee. Saccharomyces boulardii for Clostridium difficile-associated enteropathies in infants. J Pediatr Gastroenterol Nutr. 16:419–425 (1993).PubMedGoogle Scholar
  6. 6.
    L. V. McFarland, C. M. Surawicz, R. N. Greenberg, G. W. Elmer, K. A. Moyer, S. A. Melcher, K. E. Bowen, and J. L. Cox. Prevention of beta-lactam-associated diarrhea by Saccharomyces boulardii compared with placebo. Am J Gastroenterol. 90:439–448 (1995).PubMedGoogle Scholar
  7. 7.
    L. V. McFarland, C. M. Surawicz, R. N. Greenberg, R. Fekety, G. W. Elmer, K. A. Moyer, S. A. Melcher, K. E. Bowen, J. L. Cox, Z. Noorani, et al. A randomized placebo-controlled trial of Saccharomyces boulardii in combination with standard antibiotics for Clostridium difficile disease. JAMA. 271:1913–1918 (1994).PubMedCrossRefGoogle Scholar
  8. 8.
    C. M. Surawicz, G. W. Elmer, P. Speelman, L. V. McFarland, J. Chinn, and G. Van Belle. Prevention of antibiotic-associated diarrhea by Saccharomyces boulardii: a prospective study. Gastroenterology. 96:981–988 (1989).PubMedGoogle Scholar
  9. 9.
    C. M. Surawicz, L. V. McFarland, R. N. Greenberg, M. Rubin, R. Fekety, M. E. Mulligan, R. J. Garcia, S. Brandmarker, K. Bowen, D. Borjal, and G. W. Elmer. The search for a better treatment for recurrent Clostridium difficile disease: use of high-dose vancomycin combined with Saccharomyces boulardii. Clin Infect Dis. 31:1012–1017 (2000).PubMedCrossRefGoogle Scholar
  10. 10.
    M. Guslandi, G. Mezzi, M. Sorghi, and P. A. Testoni. Saccharomyces boulardii in maintenance treatment of Crohn’s disease. Dig Dis Sci. 45:1462–1464 (2000).PubMedCrossRefGoogle Scholar
  11. 11.
    M. Guslandi, P. Giollo, and P. A. Testoni. A pilot trial of Saccharomyces boulardii in ulcerative colitis. Eur J Gastroenterol Hepatol. 15:697–698 (2003).PubMedCrossRefGoogle Scholar
  12. 12.
    G. W. Elmer, L. V. McFarland, C. M. Surawicz, L. Danko, and R. N. Greenberg. Behaviour of Saccharomyces boulardii in recurrent Clostridium difficile disease patients. Aliment Pharmacol Ther. 13:1663–1668 (1999).PubMedCrossRefGoogle Scholar
  13. 13.
    J. P. Buts, and P. Bernasconi. Saccharomyces boulardii: basic science and clinical applications in gastroenterology. Gastroenterol Clin North Am. 34:515–532 (2005).PubMedCrossRefGoogle Scholar
  14. 14.
    J. L. Fietto, R. S. Araujo, F. N. Valadao, L. G. Fietto, R. L. Brandao, M. J. Neves, F. C. Gomes, J. R. Nicoli, and I. M. Castro. Molecular and physiological comparisons between Saccharomyces cerevisiae and Saccharomyces boulardii. Can J Microbiol. 50:615–621 (2004).PubMedCrossRefGoogle Scholar
  15. 15.
    H. Bléhaut, J. Massot, G. W. Elmer, and R. H. Levy. Disposition kinetics of Saccharomyces boulardii in man and rat. Biopharm Drug Dispos. 10:353–364 (1989).PubMedCrossRefGoogle Scholar
  16. 16.
    L. Truelstrup Hansen, P. M. Allan Wojtas, Y. L. Jin, and A. T. Paulson. Survival of Ca-alginate microencapsulated Bifidobacterium spp. in milk and stimulated gastrointestinal conditions. Food Microbiol. 19:35–45 (2002).CrossRefGoogle Scholar
  17. 17.
    K. Adhikari, A. Mustapha, I. U. Grun, and L. Fernando. Viability of microencapsulated bifidobacteria in set yogurt during refrigerated storage. J Dairy Sci. 83:1946–1951 (2000).PubMedCrossRefGoogle Scholar
  18. 18.
    R. C. W. Hou, M. Y. Lin, M. M. C. Wang, and J. T. C. Tzen. Increase of viability of entrapped cells of Lactobacillus delbrueckii ssp. bulgaricus in artificial sesame oil emulsion. J Dairy Sci. 86:424–428 (2002).CrossRefGoogle Scholar
  19. 19.
    W. C. Lian, H. C. Hsiao, and C. C. Chou. Viability of microencapsulated bifidobacteria in simulated gastric juice and bile solution. Int J Food Microbiol. 86:293–301 (2003).PubMedCrossRefGoogle Scholar
  20. 20.
    J. H. Cui, J. S. Goh, P. H. Kim, S. H. Choi, and B. J. Lee. Survival and stability of bifidobacteria loaded in alginate poly-l-lysine microparticles. Int J Pharm. 210:51–59 (2000).PubMedCrossRefGoogle Scholar
  21. 21.
    K. Sultana, G. Godward, N. Reynolds, R. Arumugaswamy, P. Peiris, and K. Kailasapathy. Encapsulation of probiotic bacteria with alginate-starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt. Int J Food Microbiol. 62:47–55 (2000).PubMedCrossRefGoogle Scholar
  22. 22.
    W. Krasaekoopt, B. Bhandari, and H.C. Deeth. Survival of probiotics encapsulated in chitosan-coated alginate beads in yoghurt from UHT and conventionally treated milk during storage. LWT. 39:177–183 (2006).CrossRefGoogle Scholar
  23. 23.
    M. L. Lorenzo-Lamosa, C. Remunan-Lopez, J. L. Vila-Jato, and M. J. Alonso. Design of microencapsulated chitosan microspheres for colonic drug delivery. J Control Release. 52:109–118 (1998).PubMedCrossRefGoogle Scholar
  24. 24.
    A. Lamprecht, H. Yamamoto, H. Takeuchi, and Y. Kawashima. Microsphere design for the colonic delivery of 5-fluorouracil. J Control Release. 90:313–322 (2003).PubMedCrossRefGoogle Scholar
  25. 25.
    D. Serp, E. Cantana, C. Heinzen, U. Von Stockar, and I. W. Marison. Characterization of an encapsulation device for the production of monodisperse alginate beads for cell immobilization. Biotechnol Bioeng. 70:41–53 (2000).PubMedCrossRefGoogle Scholar
  26. 26.
    K. Koyama, and M. Seki. Cultivation of yeast and plant cells entrapped in the low-viscous liquid-core of an alginate membrane capsule prepared using polyethylene glycol. J Biosci Bioeng. 97:111–118 (2004).PubMedGoogle Scholar
  27. 27.
    Q. Wen-Tao, Y. Wei-Ting, X. Yu-Bing, and M. Xiaojun. Optimization of Saccharomyces cerevisiae culture in alginate–chitosan–alginate microcapsule. Biochem Eng J. 25:151–157 (2005).CrossRefGoogle Scholar
  28. 28.
    F. Talebnia, C. Niklasson, and M. J. Taherzadeh. Ethanol production from glucose and dilute-acid hydrolyzates by encapsulated S. cerevisiae. Biotechnol Bioeng. 90:345–353 (2005).PubMedCrossRefGoogle Scholar
  29. 29.
    F. Talebnia, and M. J. Taherzadeh. In situ detoxification and continuous cultivation of dilute-acid hydrolyzate to ethanol by encapsulated S. cerevisiae. J Biotechnol. 25:377–384 (2006).CrossRefGoogle Scholar
  30. 30.
    J. S. Lee, D. S. Cha, and H. J. Park. Survival of freeze-dried Lactobacillus bulgaricus KFRI 673 in chitosan-coated calcium alginate microparticles. J Agric Food Chem. 52:7300–7305 (2004).PubMedCrossRefGoogle Scholar
  31. 31.
    C. Iyer, M. Phillips, and K. Kailasapathy. Release studies of Lactobacillus casei strain Shirota from chitosan-coated alginate-starch microcapsules in ex vivo porcine gastrointestinal contents. Lett Appl Microbiol. 41:493–497 (2005).PubMedCrossRefGoogle Scholar
  32. 32.
    A. Ainsley Reid, J. C. Vuillemard, M. Britten, Y. Arcand, E. Farnworth, and C. P. Champagne. Microentrapment of probiotic bacteria in a Ca(2+)-induced whey protein gel and effects on their viability in a dynamic gastro-intestinal model. J Microencapsul. 22:603–619 (2005).PubMedCrossRefGoogle Scholar
  33. 33.
    M. George, and T. E. Abraham. Polyionic hydrocolloids for the intestinal delivery of protein drugs: Alginate and chitosan—a review. J Control Release. 114:1–14 (2006).PubMedCrossRefGoogle Scholar
  34. 34.
    A. K. Anal, D. Bhopatkar, S. Tokura, H. Tamura, and W. F. Stevens. Chitosan-alginate multilayer beads for gastric passage and controlled intestinal release of protein. Drug Dev Ind Pharm. 29:713–724 (2003).PubMedCrossRefGoogle Scholar
  35. 35.
    A. K. Anal, and W. F. Stevens. Chitosan-alginate multilayer beads for controlled release of ampicillin. Int J Pharm. 290:45–54 (2005).PubMedCrossRefGoogle Scholar
  36. 36.
    K. Y. Lee, and T. R. Heo. Survival of Bifidobacterium longum immobilized in calcium alginate beads in simulated gastric juices and bile salt solution. Appl Environ Microbiol. 66:869–873 (2000).PubMedCrossRefGoogle Scholar
  37. 37.
    D. W. Lee, S. J. Hwang, J. B. Park, and H. J. Park. Preparation and release characteristics of polymer-coated and blended alginate microspheres. J Microencapsul. 20:179–192 (2003).PubMedCrossRefGoogle Scholar
  38. 38.
    O. Gaserod, O. Smidsrod, and G. Skjak-Braek. Microcapsules of alginate-chitosan-I A quantitative study of the interaction between alginate and chitosan. Biomaterials. 19:1815–1825 (1998).PubMedCrossRefGoogle Scholar
  39. 39.
    V. Chandramouli, K. Kailasapathy, P. Peiris, and M. Jones. An improved method of microencapsulation and its evaluation to protect Lactobacillus spp. in simulated gastric conditions. J Microbiol Methods. 56:27–35 (2004).PubMedCrossRefGoogle Scholar
  40. 40.
    C. Tuleu, C. Andrieux, P. Boy, and J. C. Chaumeil. Gastrointestinal transit of pellets in rats: effect of size and density. Int J Pharm. 180:123–131 (1999).PubMedCrossRefGoogle Scholar
  41. 41.
    P. Girard, Y. Pansart, I. Lorette, and J. M. Gillardin. Dose-response relationship and mechanism of action of Saccharomyces boulardii in castor oil-induced diarrhea in rats. Dig Dis Sci. 48:770–774 (2003).PubMedCrossRefGoogle Scholar
  42. 42.
    P. Girard, Y. Pansart, M. C. Coppe, and J. M. Gillardin. Saccharomyces boulardii inhibits water and electrolytes changes induced by castor oil in the rat colon. Dig Dis Sci. 50:2183–2190 (2005).PubMedCrossRefGoogle Scholar
  43. 43.
    G. Philippe-Taine, L. Coroler, R. H. Levy, and J. M. Gillardin. Dose dependent preventive effect of Saccharomyces boulardii on clindamycin induced alterations in intestinal aerobic flora of the hamster. Microb Ecol Health Dis. 15:126–130 (2003).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Sandrine Graff
    • 1
  • Sajjad Hussain
    • 1
  • Jean-Claude Chaumeil
    • 1
  • Christine Charrueau
    • 1
  1. 1.Laboratoire de Pharmacie Galénique EA 2498Université Paris Descartes, Faculté des Sciences Pharmaceutiques et BiologiquesParis Cedex 06France

Personalised recommendations