Skip to main content
Log in

Thyroid Hormone Regulates the Expression and Function of P-glycoprotein in Caco-2 Cells

  • Reseach Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

In patients with thyroid disorders, abnormalities in the pharmacokinetics of various drugs including digoxin, a substrate of P-glycoprotein (Pgp) which plays a crucial role in drug absorption and disposition, have been reported. In this study, we examined the effect of 3,5,3′-l-triiodothyronine (T3) on the function and expression of Pgp using the human intestinal epithelial cell line Caco-2.

Materials and Methods

The effect of T3 on the expression of Pgp and MDR1 mRNA was assessed by Western blotting and competitive polymerase chain reaction, respectively. Digoxin uptake and transport by Pgp was assessed using Caco-2 cell monolayers.

Results

The expression of MDR1 mRNA was increased by T3 treatment in a concentration-dependent manner. Pgp expression was also increased by 100 nM T3, whereas it decreased on depletion of T3. The amount of [3H]digoxin accumulated in Caco-2 cell monolayers treated with T3 was diminished significantly compared with that in control cells. In addition, the basal-to-apical transcellular transport of [3H]digoxin was accelerated by T3 treatment.

Conclusions

These results indicate that T3 regulates the expression and function of Pgp. It is possible that changes in Pgp expression alter the pharmacokinetics of Pgp substrates in patients with thyroid disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PCR:

polymerase chain reaction

Pgp:

P-glycoprotein

T3 :

3,5,3′-l-triiodothyronine

References

  1. J. H. Lin and M. Yamazaki. Role of P-glycoprotein in pharmacokinetics: clinical implications. Clin. Pharmacokinet. 42:59–98 (2003).

    Article  PubMed  CAS  Google Scholar 

  2. B. Greiner, M. Eichelbaum, P. Fritz, H. P. Kreichgauer, O. von Richter, J. Zundler, and H. K. Kroemer. The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. J. Clin. Invest. 104:147–153 (1999).

    Article  PubMed  CAS  Google Scholar 

  3. M. Demeule, J. Jodoin, E. Beaulieu, M. Brossard, and R. Beliveau. Dexamethasone modulation of multidrug transporters in normal tissues. FEBS. Lett. 442:208–214 (1999).

    Article  PubMed  CAS  Google Scholar 

  4. S. Micuda, L. Mundlova, J. Mokry, J. Osterreicher, J. Cermanova, D. Cizkova, and J. Martinkova. The effect of mdr1 induction on the pharmacokinetics of rhodamine 123 in rats. Basic Clin. Pharmacol. Toxicol. 96:257–258 (2005).

    Article  PubMed  CAS  Google Scholar 

  5. P. G. Wells, J. Feely, G. R. Wilkinson, and A. J. Wood. Effect of thyrotoxicosis on liver blood flow and propranolol disposition after long-term dosing. Clin. Pharmacol. Ther. 33:603–608 (1983).

    Article  PubMed  CAS  Google Scholar 

  6. J. R. Lawrence, D. J. Sumner, W. J. Kalk, W. A. Ratcliffe, B. Whiting, K. Gray, and M. Lindsay. Digoxin kinetics in patients with thyroid dysfunction. Clin. Pharmacol. Ther. 22:7–13 (1977).

    PubMed  CAS  Google Scholar 

  7. G. M. Shenfield, J. Thompson, and D. B. Horn. Plasma and urinary digoxin in thyroid dysfunction. Eur. J. Clin. Pharmacol. 12:437–443 (1977).

    Article  PubMed  CAS  Google Scholar 

  8. J. Bonelli, H. Haydl, K. Hruby, and G. Kaik. The pharmacokinetics of digoxin in patients with manifest hyperthyroidism and after normalization of thyroid function. Int. J. Clin. Pharmacol. Biopharm. 16:302–306 (1978).

    PubMed  CAS  Google Scholar 

  9. G. M. Shenfield. Influence of thyroid dysfunction on drug pharmacokinetics. Clin. Pharmacokinet. 6:275–297 (1981).

    Article  PubMed  CAS  Google Scholar 

  10. N. Nishio, T. Katsura, K. Ashida, M. Okuda, and K. Inui. Modulation of P-glycoprotein expression in hyperthyroid rat tissues. Drug Metab. Dispos. 33:1584–1587 (2005).

    Article  PubMed  CAS  Google Scholar 

  11. W. Siegmund, S. Altmannsberger, A. Paneitz, U. Hecker, M. Zschiesche, G. Franke, W. Meng, R. Warzok, E. Schroeder, B. Sperker, B. Terhaag, I. Cascorbi, and H. K. Kroemer. Effect of levothyroxine administration on intestinal P-glycoprotein expression: consequences for drug disposition. Clin. Pharmacol. Ther. 72:256–264 (2002).

    Article  PubMed  CAS  Google Scholar 

  12. K. Ashida, T. Katsura, H. Motohashi, H. Saito, and K. Inui. Thyroid hormone regulates the activity and expression of the peptide transporter PEPT1 in Caco-2 cells. Am. J. Physiol. Gastrointest. Liver Physiol. 282:G617–623 (2002).

    PubMed  CAS  Google Scholar 

  13. H. H. Samuels, F. Stanley, and J. Casanova. Depletion of l-3,5,3′-triiodothyronine and l-thyroxine in euthyroid calf serum for use in cell culture studies of the action of thyroid hormone. Endocrinology 105:80–85 (1979).

    Article  PubMed  CAS  Google Scholar 

  14. S. Masuda, S. Uemoto, T. Hashida, Y. Inomata, K. Tanaka, and K. Inui. Effect of intestinal P-glycoprotein on daily tacrolimus trough level in a living-donor small bowel recipient. Clin. Pharmacol. Ther. 68:98–103 (2000).

    Article  PubMed  CAS  Google Scholar 

  15. K. Westphal, A. Weinbrenner, M. Zschiesche, G. Franke, M. Knoke, R. Oertel, P. Fritz, O. von Richter, R. Warzok, T. Hachenberg, H. M. Kauffmann, D. Schrenk, B. Terhaag, H. K. Kroemer, and W. Siegmund. Induction of P-glycoprotein by rifampin increases intestinal secretion of talinolol in human beings: a new type of drug/drug interaction. Clin. Pharmacol. Ther. 68:345–355 (2000).

    Article  PubMed  CAS  Google Scholar 

  16. D. Durr, B. Stieger, G. A. Kullak-Ublick, K. M. Rentsch, H. C. Steinert, P. J. Meier, and K. Fattinger. St John’s Wort induces intestinal P-glycoprotein/MDR1 and intestinal and hepatic CYP3A4. Clin. Pharmacol. Ther. 68:598–604 (2000).

    Article  PubMed  CAS  Google Scholar 

  17. L. Jette, E. Beaulieu, J. M. Leclerc, and R. Beliveau. Cyclosporin A treatment induces overexpression of P-glycoprotein in the kidney and other tissues. Am. J. Physiol. 270:F756–765 (1996).

    PubMed  CAS  Google Scholar 

  18. J. Y. Zhao, M. Ikeguchi, T. Eckersberg, and M. T. Kuo. Modulation of multidrug resistance gene expression by dexamethasone in cultured hepatoma cells. Endocrinology 133:521–528 (1993).

    Article  PubMed  CAS  Google Scholar 

  19. K. V. Chin, S. S. Chauhan, I. Pastan, and M. M. Gottesman. Regulation of mdr RNA levels in response to cytotoxic drugs in rodent cells. Cell Growth Differ. 1:361–365 (1990).

    PubMed  CAS  Google Scholar 

  20. R. C. Ribeiro, J. W. Apriletti, B. L. West, R. L. Wagner, R. J. Fletterick, F. Schaufele, and J. D. Baxter. The molecular biology of thyroid hormone action. Ann. N. Y. Acad. Sci. 758:366–389 (1995).

    Article  PubMed  CAS  Google Scholar 

  21. K. Ashida, T. Katsura, H. Saito, and K. Inui. Decreased activity and expression of intestinal oligopeptide transporter PEPT1 in rats with hyperthyroidism in vivo. Pharm. Res. 21:969–975 (2004).

    Article  PubMed  CAS  Google Scholar 

  22. C. J. Torrance, J. E. Devente, J. P. Jones, and G. L. Dohm. Effects of thyroid hormone on GLUT4 glucose transporter gene expression and NIDDM in rats. Endocrinology 138:1204–1214 (1997).

    Article  PubMed  CAS  Google Scholar 

  23. M. Matosin-Matekalo, J. E. Mesonero, T. J. Laroche, M. Lacasa, and E. Brot-Laroche. Glucose and thyroid hormone co-regulate the expression of the intestinal fructose transporter GLUT5. Biochem. J. 339(Pt 2):233–239 (1999).

    Article  PubMed  CAS  Google Scholar 

  24. J. Huuskonen, M. Vishnu, C. R. Pullinger, P. E. Fielding, and C. J. Fielding. Regulation of ATP-binding cassette transporter A1 transcription by thyroid hormone receptor. Biochemistry 43:1626–1632 (2004).

    Article  PubMed  CAS  Google Scholar 

  25. R. A. Giannella, J. Orlowski, M. L. Jump, and J. B. Lingrel. Na(+)-K(+)-ATPase gene expression in rat intestine and Caco-2 cells: response to thyroid hormone. Am. J. Physiol. 265:G775–782 (1993).

    PubMed  CAS  Google Scholar 

  26. X. Li, A. J. Misik, C. V. Rieder, R. J. Solaro, A. Lowen, and L. Fliegel. Thyroid hormone receptor α1 regulates expression of the Na+/H+ exchanger (NHE1). J. Biol. Chem. 277:28656–28662 (2002).

    Article  PubMed  CAS  Google Scholar 

  27. P. O’Connor and J. Feely. Clinical pharmacokinetics and endocrine disorders. Therapeutic implications. Clin. Pharmacokinet. 13:345–364 (1987).

    Article  PubMed  CAS  Google Scholar 

  28. H. R. Ochs, D. J. Greenblatt, H. J. Kaschell, U. Klehr, M. Divoll, and D. R. Abernethy. Diazepam kinetics in patients with renal insufficiency or hyperthyroidism. Br. J. Clin. Pharmacol. 12:829–832 (1981).

    PubMed  CAS  Google Scholar 

  29. M. Jin, T. Shimada, M. Shintani, K. Yokogawa, M. Nomura, and K. Miyamoto. Long-term levothyroxine treatment decreases the oral bioavailability of cyclosporin A by inducing P-glycoprotein in small intestine. Drug Metab. Pharmacokinet. 20:324–330 (2005).

    Article  PubMed  CAS  Google Scholar 

  30. T. Mitin, L. L. von Moltke, M. H. Court, and D. J. Greenblatt. Levothyroxine up-regulates P-glycoprotein independent of the pregnane X receptor. Drug Metab. Dispos. 32:779–782 (2004).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the 21st Century COE Program “Knowledge Information Infrastructure for Genome Science”, by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan, and by The Nakatomi Foundation. N. N. is supported as a Teaching Assistant by the 21st Century COE Program “Knowledge Information Infrastructure for Genome Science.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken-ichi Inui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishio, N., Katsura, T. & Inui, Ki. Thyroid Hormone Regulates the Expression and Function of P-glycoprotein in Caco-2 Cells. Pharm Res 25, 1037–1042 (2008). https://doi.org/10.1007/s11095-007-9495-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9495-x

Key words

Navigation