Skip to main content
Log in

Molecular Mobility, Thermodynamics and Stability of Griseofulvin’s Ultraviscous and Glassy States from Dynamic Heat Capacity

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To determine the calorimetric relaxation time needed for modeling griseofulvin’s stability against crystallization during storage.

Methods

Both temperature-modulated and unmodulated scanning calorimetry have been used to determine the heat capacity of griseofulvin in the glassy and melt state.

Results

The calorimetric relaxation time, τ cal , of its melt varies with the temperature T according to the relation, \( \tau _{{{{cal}}}} {\left[ s \right]} = 10^{{ - 13.3}} \exp {\left[ {{2,292} \mathord{\left/ {\vphantom {{2,292} {{\left( {T{\left[ K \right]} - 289.5} \right)}}}} \right. \kern-\nulldelimiterspace} {{\left( {T{\left[ K \right]} - 289.5} \right)}}} \right]} \), and the distribution of relaxation times parameter is 0.67. The unrelaxed heat capacity of the griseofulvin melt is equal to its vibrational heat capacity.

Conclusions

Griseofulvin neither crystallizes on heating to 373 K at 1 K/h rate, nor on cooling. Molecular mobility and vibrational heat capacity measured here are more reliable for modeling a pharmaceutical’s stability against crystallization than the currently used kinetics–thermodynamics relations, and molecular mobility in the (fixed structure) glassy state is much greater than the usual extrapolation from the melt state yields. Molecular relaxation time of the glassy state of griseofulvin is about 2 months at 298 K, and longer at lower temperatures. It would spontaneously increase with time. If the long-range motions alone were needed for crystallization, griseofulvin would become more stable against crystallization during storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B. C. Hancock, and G. Zografi. Characteristics and significance of the amorphous state in pharmaceutical systems. J. Pharm. Sci. 86:1–12 (1997).

    Article  PubMed  CAS  Google Scholar 

  2. D. Q. M. Craig, P. G. Royall, V. L. Kett, and M. L. Hopton. The relevance of the amorphous state to pharmaceutical dosage forms: glassy drugs and freeze dried systems. Int J Pharmaceut. 179:179–207 (1999).

    Article  CAS  Google Scholar 

  3. B. C. Hancock, and M. Parks. What is the true solubility advantage for amorphous pharmaceuticals? Pharm. Res. 17:397–404 (2000).

    Article  PubMed  CAS  Google Scholar 

  4. G. P. Johari, and D. Pyke. On the glassy and supercooled states of a common medicament: Aspirin. Phys. Chem. Chem. Phys. 2:5479–5484 (2000).

    Article  CAS  Google Scholar 

  5. L. Yu. Amorphous pharmaceutical solids: preparation, characterization and stabilization. Adv. Drug. Deliv. Rev. 48:27–42 (2001).

    Article  PubMed  CAS  Google Scholar 

  6. L. R. Hilden, and R. Morris. Prediction of relaxation behavior of amorphous pharmaceutical compounds. I. Master curves concept and practice. J. Pharm. Sci. 92:1464–1472 (2003).

    Article  PubMed  CAS  Google Scholar 

  7. A. M. Kaushal, P. Gupta, and A. K. Bansal. Amorphous drug delivery systems: molecular aspects, design and performance. Crit. Rev. Ther. Drug Carrier Systems 21:133–193 (2004).

    Article  CAS  Google Scholar 

  8. Y. C. Martin. A bioavailability score. J. Med. Chem. 48:3164–3170 (2005).

    Article  PubMed  CAS  Google Scholar 

  9. G. Adam, and J. H. Gibbs. The temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43:139–146 (1965).

    Article  CAS  Google Scholar 

  10. W. Kauzmann. The glassy state and the behaviour of liquids at low temperature. Chem. Rev. 43:219–256 (1948).

    Article  CAS  Google Scholar 

  11. B. C. Hancock, S. L. Shamblin, and G. Zografi. Molecular mobility of pharmaceutical solids below the glass transition temperature. Pharm. Res. 12:799–806 (1995).

    Article  PubMed  CAS  Google Scholar 

  12. B. C. Hancock, K. Christensen, and S. L. Shamblin. Estimating the critical molecular mobility temperature (Tk) of amorphous pharmaceuticals. Pharm. Res. 15:1649–1651 (1998).

    Article  PubMed  CAS  Google Scholar 

  13. S. L. Shamblin, X. Tang, L. Chang, B. C. Hancock, and M. Pikal. Characterization of the time scales of molecular motion in pharmaceutically important glasses. J. Phys. Chem. B. 103:4113–4121 (1999).

    Article  CAS  Google Scholar 

  14. K. J. Crowley, and G. Zografi. The use of thermal methods for predicting the glass-former fragility. Thermochim. Acta. 380:79–93 (2001).

    Article  CAS  Google Scholar 

  15. D. Zhou, G. G. Z. Zhang, D. Law, D. J. W. Grant, and E. A. Schmitt. Physical stability of amorphous pharmaceuticals: Importance of configurational thermodynamic quantities and molecular mobility. J. Pharm. Sci. 91:1863–1872 (2002).

    Article  PubMed  CAS  Google Scholar 

  16. E. Tombari, S. Presto, G. P. Johari, and R. M. Shanker. Dynamic heat capacity and relaxation time of ultraviscous melt and glassy acetaminophen. J. Pharm. Sci. 95:1006–1021 (2006).

    Article  PubMed  CAS  Google Scholar 

  17. J. J. M. Ramos, R.Taveira-Marques, and H. P. Diogo. Estimation of the fragility index of indomethacin by DSC using the heating and cooling rate dependency of the glass transition. J. Pharm. Sci. 93:1503–1507 (2004), and references therein.

    Article  PubMed  CAS  Google Scholar 

  18. G. P. Johari, S. Kim, and R. M. Shanker. Dielectric studies of molecular motions in amorphous solid and ultraviscous acetaminophen. J. Pharm. Sci. 94:2207–2223 (2005).

    Article  PubMed  CAS  Google Scholar 

  19. A. Boller, C. Schick, and B. Wunderlich. Modulated differential scanning calorimetry in the glass transition region. Thermochim Acta. 266:97–911 (1995). See also papers in Special issues on Calorimetry In Thermochim. Acta. volume 304–305 (year1997) and volume 377 (year 2001).

    Article  CAS  Google Scholar 

  20. S. L. Simon. Temperature modulated DSC: Theory and application. Thermochim Acta. 374:55–71 (2001).

    Article  CAS  Google Scholar 

  21. G. Salvetti, E. Tombari, L. Mikheeva, and G. P. Johari. The endothermic effects during denaturation of lysozyme by temperature modulated calorimetry and an intermediate reaction equilibrium. J. Phys. Chem. B. 106:6081–6087 (2002).

    Article  CAS  Google Scholar 

  22. E. Tombari, G. Salvetti, C. Ferrari, and G. P. Johari. Structural unfreezing and endothermic effects in liquids, β-d-fructose. J. Phys. Chem. B. 108:16877–16882 (2004).

    Article  CAS  Google Scholar 

  23. E. Tombari, S. Presto, G. Salvetti, and G. P. Johari. Spontaneous decrease in the heat capacity of a glass. J. Chem. Phys. 117:8436–8441 (2002).

    Article  CAS  Google Scholar 

  24. G. P. Johari, C. Ferrari, E. Tombari, and G. Salvetti. Temperature modulation effects on a material’s properties: Thermodynamics and dielectric relaxation during polymerization. J. Chem. Phys. 110:11592–11598 (1999).

    Article  CAS  Google Scholar 

  25. J. Wang, and G. P. Johari. Effects of sinusoidal temperature and pressure modulations on the structural relaxation of amorphous solids. J. Non-Cryst. Solids 281:91–107 (2001).

    Article  CAS  Google Scholar 

  26. K. L. Ngai, and M. Paluch. Classification of secondary relaxation in glass-formers based on dynamic properties. J. Chem. Phys. 120:857–873 (2004).

    Article  PubMed  CAS  Google Scholar 

  27. M. Goldstein. Viscous liquids and the glass transition V. Sources of excess specific heat of the liquid. J. Chem. Phys. 64:4767–4774 (1976).

    Article  CAS  Google Scholar 

  28. G. P. Johari. On the excess entropy of disordered solids. Phil. Mag. B. 41:41–47 (1981).

    Google Scholar 

  29. G. P. Johari. Contributions to the entropy of a glass and liquid, and the dielectric relaxation time. J. Chem. Phys. 112:7518–7523 (2000).

    Article  CAS  Google Scholar 

  30. G. P. Johari. On extrapolating a supercooled liquid’s excess entropy, the vibrational component, and interpreting the configurational entropy theory. J. Phys. Chem. B. 105:3600–3604 (2001).

    Article  CAS  Google Scholar 

  31. G. P. Johari. Decrease in the configurational and vibrational entropies on supercooling a liquid and their relations with the excess entropy. J. Non-Cryst. Solids 307–310:387–392 (2002).

    Article  Google Scholar 

  32. G. W. Scherer. Relaxation in glass and composites, Wiley, New York, 1986, pp. 113–174.

    Google Scholar 

  33. G. P. Johari. Glass transition and secondary relaxation in molecular liquids and crystals. Ann. NY. Acad. Sci. 279:117–140 (1976).

    Article  CAS  Google Scholar 

  34. J. Haddad, and M.Goldstein. Viscous liquids and the glass transition. VIII. Effect of fictive temperature on dielectric relaxation in the glassy state. J. Non-Cryst. Solids 30:1–22 (1978).

    Article  CAS  Google Scholar 

  35. G. P. Johari. Effects on annealing on the secondary relaxations in glass. J. Chem. Phys. 77:4619–4626 (1982).

    Article  CAS  Google Scholar 

  36. H. Wagner, and R. Richert. Equilibrium and non-equilibrium type β-relaxations: d-sorbitol versus o-terphenyl. J. Phys. Chem. 103:4071–4077 (1999).

    CAS  Google Scholar 

  37. G. P. Johari, and M. Goldstein. Viscous liquids and the glass transition. II. Secondary relaxations in glasses of rigid molecules. J. Chem. Phys. 53:2372–2388 (1970).

    Article  CAS  Google Scholar 

  38. G. P. Johari. Intrinsic mobility of molecular glasses. J. Chem. Phys. 58:1766–1770 (1973).

    Article  CAS  Google Scholar 

  39. G. P. Johari, G. Power, and J. K. Vij. Localized relaxation’s strength and its mimicry of glass-softening thermodynamics. J. Chem. Phys. 116:5908–5909 (2002).

    Article  CAS  Google Scholar 

  40. G. P. Johari, G. Power, and J. K. Vij. Localized relaxation in a glass and the minimum in its orientational polarization contribution. J. Chem. Phys. 117:1714–1722 (2002).

    Article  CAS  Google Scholar 

  41. G. Power, G. P. Johari, and J. K. Vij. Relaxation strength and localized motions in d-sorbitol and mimicry of glass-softening thermodynamics. J. Chem. Phys. 119:435–442 (2003).

    Article  CAS  Google Scholar 

  42. G. Power, J. K. Vij, and G. P. Johari. Kinetics of spontaneous change in the localized motions of D-sorbitol glass. J. Chem. Phys. 124:074509 (8 pages) (2006).

    Google Scholar 

  43. G. P. Johari. The entropy loss on supercooling a liquid and anharmonic contributions. J. Chem. Phys. 116:2043–2046 (2002).

    Article  CAS  Google Scholar 

  44. G. P. Johari. An equilibrium supercooled liquid’s entropy and enthalpy in the Kauzmann and the third law extrapolations and a proposed experimental resolution. J. Chem. Phys. 113:751–761 (2000).

    Article  CAS  Google Scholar 

  45. G. P. Johari. Examining the entropy theory’s application for viscosity data and the inference for a thermodynamic transition in an equilibrium liquid. J. Non-Cryst. Solids 288:148–158 (2001).

    Article  CAS  Google Scholar 

  46. G. P. Johari. Heat capacity and entropy of an equilibrium liquid from T g to 0 K, and examining the conjectures of an underlying thermodynamic transition. Chem. Phys. 265:217–231 (2001).

    Article  CAS  Google Scholar 

  47. G. P. Johari. Use of crystal polymorphs for resolving an equilibrium liquid’s state on supercooling to 0 K. J. Chem. Phys. 116:1744–1747 (2002).

    Article  CAS  Google Scholar 

  48. K. Kishimoto, H. Suga, and S. Seki. Calorimetric study of the glassy state. VIII. Heat capacity and relaxation phenomena of isopropylbenzene. Bull. Chem. Soc. Jap. 46:3020–3031 (1973).

    Article  CAS  Google Scholar 

  49. H. Fujimori, and M. Oguni. Calorimetric Study of D, L-propene carbonate: Observation of the beta- as well as alpha-glass transition in the supercooled liquid. J. Chem. Thermodyn. 26:367–378 (1994).

    Article  CAS  Google Scholar 

  50. H. Fujimori, M. Muzikami, and M. Oguni. Calorimetric study of 1,3-diphenyl-1,1,3,4-tyetramethyldisiloxane: Emergence of α-, and β-, and crystalline glass transitions. J. Non-Cryst. Solids 204:38–45 (1996).

    Article  CAS  Google Scholar 

  51. N. G. McCrum, B. E. Read, and G. Williams. Anelastic and Dielectric Effects in Polymeric Solids, Wiley, New York, 1967.

    Google Scholar 

  52. R. L. Leheny, N. Menon, S. R. Nagel, D. L. Price, K. Suzuya K, and P. Thiyagarajan. Structural studies of an organic liquid through the glass transition. J. Chem. Phys. 105:7783–7794 (1996).

    Article  CAS  Google Scholar 

  53. S. S. Tsao, and F. Spaepen. Effects of annealing on the isoconfigurational flow of a metallic glass. Acta Metallurgica 33:891–895 (1985).

    Article  CAS  Google Scholar 

  54. J. Perez. Physique et mécanique des polymères amorphes, Lavoisier (Tec & Doc), Paris, 1992.

    Google Scholar 

  55. S. V. Nemilov. Thermodynamic and kinetic aspects of the vitreous state, CRC, Boca Raton, 1995.

    Google Scholar 

  56. E. Donth. The Glass Transition Relaxation Dynamics in Liquids and Disordered Materials: Springer Series in Materials Science, Springer, Berlin, 2001.

    Google Scholar 

  57. N. Menon, S. R. Nagel, and D. C. Venerus. Dynamic viscosity of a simple glass-forming liquid, Phys. Rev. Lett. 73:963–966 (1994).

    Article  PubMed  CAS  Google Scholar 

  58. M. Vasanthavada, W Q. Tong, Y. Joshi and K. M. Serpil. Phase behavior of amorphous molecular dispersions II: Role of hydrogen bonding in solid solubility and phase separation kinetics. Pharm. Res. 22:440–448 (2005).

    Article  PubMed  CAS  Google Scholar 

  59. A. A. Elamin, C. Ahlneck, G. Alderborn, and C. Nystrom. Increased metastable solubility of milled griseofulvin, depending on the formation of a disordered surface structure. Int. J. Pharm. 111:159–170 (1994).

    Article  CAS  Google Scholar 

  60. G. Salvetti, C. Cardelli, C. Ferrari, and E. Tombari. A modulated adiabatic scanning calorimeter (MASC). Thermochim Acta. 364:11–22 (2000).

    Article  CAS  Google Scholar 

  61. G. P. Johari, E. Tombari, S. Presto, and G. Salvetti. Experimental evidence for the heat capacity maximum during a melt’s polymerization. J. Chem. Phys. 117:5086–5091 (2002).

    Article  CAS  Google Scholar 

  62. E. Tombari, S. Presto, G. Salvetti, and G. P. Johari. Endothermic freezing on heating and exothermic melting on cooling. J. Chem. Phys. 123:051104 (4 pages) (2005).

    Google Scholar 

  63. E. Tombari, C. Ferrari, G. Salvetti, and G. P. Johari. Position-dependent energy of water molecules in nanoconfined water. Phys. Chem. Chem. Phys. 7:3407–3411 (2005).

    Article  PubMed  CAS  Google Scholar 

  64. E. Tombari, C. Ferrari, G. Salvetti, and G. P. Johari. Heat capacity of tetrahydrofuran clathrate hydrate and of its components, and the clathrate formation from supercooled melt. J. Chem. Phys. 124:154507 (10 pages) (2006).

    Google Scholar 

  65. E. Tombari, G. Salvetti, C. Ferrari, and G. P. Johari. Kinetics and thermodynamics of sucrose hydrolysis from real time enthalpy and heat capacity measurements. J. Phys. Chem. B. 111:496–501 (2007).

    Article  PubMed  CAS  Google Scholar 

  66. E. Tombari, C. Ferrari, G. Salvetti, and G. P. Johari. Spontaneous liquifaction of isomerizable molecular crystals. J. Chem. Phys. 126:021107 (4 pages) (2007).

    Google Scholar 

  67. R. O. Davies, and G. O. Jones. Thermodynamic and kinetic properties of glasses. Adv. Phys. 2:370–410 (1953).

    Article  Google Scholar 

  68. H. Vogel. The law of relation between the viscosity of liquids and the temperature. Phys. Z. 22:645–646 (1921).

    CAS  Google Scholar 

  69. G. S. Fulcher. Analysis of recent measurements of the viscosity of glasses. J. Am. Ceram. Soc. 8:339–355 (1925).

    Article  CAS  Google Scholar 

  70. G. Tammann, and W. Hesse. Die abhangigkeit der viskositat von der temperature bei unterkuhlten flussigkeiten. Z. Anorg. Allg. Chem. 156:245–257 (1926).

    Article  Google Scholar 

  71. A. Q. Tool. Relation between inelastic deformability and thermal expansion of glass in its annealing range. J. Am. Ceram. Soc. 29:240–253 (1946).

    Google Scholar 

  72. O. S. Narayanaswamy. A model of structural relaxation in glasses. J. Am. Ceram. Soc. 54:491–498 (1971).

    Article  CAS  Google Scholar 

  73. C. T. Moynihan, P. B. Macedo, C. J. Montrose, P. K. Gupta, M. A. Debolt, J. F. Dill, B. E. Dom, P. W. Drake, A. J. Easteal, P. B. Eltermann, R. A. Moeller, H. Sasabe, and J. A. Wilder. Structural relaxation in vitreous materials. Ann. N.Y. Acad. Sci. 279:15–36 (1976).

    Article  CAS  Google Scholar 

  74. W. Pascheto, M. G. Parthun, A. Hallbrucker, and G. P. Johari. Calorimetric studies of structural relaxation in AgI–AgPO3 glasses. J. Non-Cryst. Solids 171:182–190 (1994).

    Article  CAS  Google Scholar 

  75. L. Gunawan, G. P. Johari, and R. M. Shanker. Structural relaxation of acetaminophen glass. Pharm. Res. 23:967–979 (2006).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by Pfizer as part of collaborative program. The experimental part of this study was performed at CNR, IPCF Pisa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. P. Johari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tombari, E., Presto, S., Johari, G.P. et al. Molecular Mobility, Thermodynamics and Stability of Griseofulvin’s Ultraviscous and Glassy States from Dynamic Heat Capacity. Pharm Res 25, 902–912 (2008). https://doi.org/10.1007/s11095-007-9444-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9444-8

Key words

Navigation