Pharmaceutical Research

, Volume 24, Issue 11, pp 1977–1992 | Cite as

Cell Penetrating Peptides: Intracellular Pathways and Pharmaceutical Perspectives

  • Leena N. Patel
  • Jennica L. Zaro
  • Wei-Chiang Shen
Expert Review

Abstract

Cell penetrating peptides, generally categorized as amphipathic or cationic depending on their sequence, are increasingly drawing attention as a non-invasive delivery technology for macromolecules. Delivery of a diverse set of cargo in terms of size and nature ranging from small molecules to particulate cargo has been attempted using different types of cell penetrating peptides (CPPs) in vitro and in vivo. However, the internalization mechanism of CPPs is an unresolved issue to date, with dramatic changes in view regarding the involvement of endocytosis as a pathway of internalization. A key reason for the lack of consensus on the mechanism can be attributed to the methodology in deciphering the internalization mechanism. In this review, we highlight some of the methodology concerns, focus more on the internalization pathway and also provide a novel perspective about the intracellular processing of CPPs, which is a crucial aspect to consider when selecting a cell penetrating peptide as a drug delivery system. In addition, recent applications of cell penetrating peptides for the delivery of small molecules, peptides, proteins, oligonucleotides, nanoparticles and liposomes have been reviewed.

Key words

cell penetrating peptides endocytosis intracellular pathways membrane transduction peptides protein transduction domains transduction 

Abbreviations

CHO cells

Chinese hamster ovary cells

CLIO

cross-linked iron oxide nanoparticles

CPPs

cell penetrating peptides

EGFP

enhanced green fluorescent protein

GAGs

glycosaminoglycans

GFP

green fluorescent protein

HIV-1

human immunodeficiency virus–1

MAP

model amphipathic peptides

MTPs

membrane transduction peptides

MTS

mitochondrial targeting signal

NPC

nuclear pore complex

PCI

photochemical internalization

PNA

peptide nucleic acid

PTDs

protein transduction domains

USPIO

ultra small paramagnetic iron oxide nanoparticles.

References

  1. 1.
    S. Futaki. Arginine-rich peptides: potential for intracellular delivery of macromolecules and the mystery of the translocation mechanisms. Int. J. Pharm. 245:1–7 (2002).PubMedGoogle Scholar
  2. 2.
    J. Fernandez-Carneado, M. J. Kogan, S. Pujals, and E. Giralt. Amphipathic peptides and drug delivery. Biopolymers 76:196–203 (2004).PubMedGoogle Scholar
  3. 3.
    R. Trehin and H. P. Merkle. Chances and pitfalls of cell penetrating peptides for cellular drug delivery. Eur. J. Pharm. Biopharm. 58:209–223 (2004).PubMedGoogle Scholar
  4. 4.
    J. L. Zaro and W. C. Shen. Quantitative comparison of membrane transduction and endocytosis of oligopeptides. Biochem. Biophys. Res. Commun. 307:241–247 (2003).PubMedGoogle Scholar
  5. 5.
    P. A. Wender, J. B. Rothbard, T. C. Jessop, E. L. Kreider, and B. L. Wylie. Oligocarbamate molecular transporters: design, synthesis, and biological evaluation of a new class of transporters for drug delivery. J. Am. Chem. Soc. 124:13382–13383 (2002).PubMedGoogle Scholar
  6. 6.
    S. Futaki, I. Nakase, T. Suzuki, Z. Youjun, and Y. Sugiura. Translocation of branched-chain arginine peptides through cell membranes: flexibility in the spatial disposition of positive charges in membrane-permeable peptides. Biochemistry 41:7925–7930 (2002).PubMedGoogle Scholar
  7. 7.
    S. Futaki, T. Suzuki, W. Ohashi, T. Yagami, S. Tanaka, K. Ueda, and Y. Sugiura. Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J. Biol. Chem. 276:5836–5840 (2001).PubMedGoogle Scholar
  8. 8.
    P. A. Wender, D. J. Mitchell, K. Pattabiraman, E. T. Pelkey, L. Steinman, and J. B. Rothbard. The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc. Natl. Acad. Sci. U. S. A. 97:13003–13008 (2000).PubMedGoogle Scholar
  9. 9.
    D. J. Mitchell, D. T. Kim, L. Steinman, C. G. Fathman, and J. B. Rothbard. Polyarginine enters cells more efficiently than other polycationic homopolymers. J. Pept. Res. 56:318–325 (2000).PubMedGoogle Scholar
  10. 10.
    B. J. Calnan, B. Tidor, S. Biancalana, D. Hudson, and A. D. Frankel. Arginine-mediated RNA recognition: the arginine fork. Science 252:1167–1171 (1991).Google Scholar
  11. 11.
    J. Oehlke, A. Scheller, B. Wiesner, E. Krause, M. Beyermann, E. Klauschenz, M. Melzig, and M. Bienert. Cellular uptake of an alpha-helical amphipathic model peptide with the potential to deliver polar compounds into the cell interior non-endocytically. Biochim. Biophys. Acta. 1414:127–139 (1998).PubMedGoogle Scholar
  12. 12.
    A. Scheller, J. Oehlke, B. Wiesner, M. Dathe, E. Krause, M. Beyermann, M. Melzig, and M. Bienert. Structural requirements for cellular uptake of alpha-helical amphipathic peptides. J. Pept. Sci. 5:185–194 (1999).PubMedGoogle Scholar
  13. 13.
    T. Suzuki, S. Futaki, M. Niwa, S. Tanaka, K. Ueda, and Y. Sugiura. Possible existence of common internalization mechanisms among arginine-rich peptides. J. Biol. Chem. 277:2437–2443 (2002).PubMedGoogle Scholar
  14. 14.
    E. Vives, P. Brodin, and B. Lebleu. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem. 272:16010–16017 (1997).PubMedGoogle Scholar
  15. 15.
    D. Derossi, S. Calvet, A. Trembleau, A. Brunissen, G. Chassaing, and A. Prochiantz. Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent. J. Biol. Chem. 271:18188–18193 (1996).PubMedGoogle Scholar
  16. 16.
    J. P. Richard, K. Melikov, E. Vives, C. Ramos, B. Verbeure, M. J. Gait, L. V. Chernomordik, and B. Lebleu. Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J. Biol. Chem. 278:585–590 (2003).PubMedGoogle Scholar
  17. 17.
    J. P. Richard, K. Melikov, H. Brooks, P. Prevot, B. Lebleu, and L. V. Chernomordik. Cellular uptake of unconjugated TAT peptide involves clathrin-dependent endocytosis and heparan sulfate receptors. J. Biol. Chem. 280:15300–15306 (2005).PubMedGoogle Scholar
  18. 18.
    I. M. Kaplan, J. S. Wadia, and S. F. Dowdy. Cationic TAT peptide transduction domain enters cells by macropinocytosis. J. Control. Release 102:247–253 (2005).PubMedGoogle Scholar
  19. 19.
    I. Nakase, M. Niwa, T. Takeuchi, K. Sonomura, N. Kawabata, Y. Koike, M. Takehashi, S. Tanaka, K. Ueda, J. C. Simpson, A. T. Jones, Y. Sugiura, and S. Futaki. Cellular uptake of arginine-rich peptides: roles for macropinocytosis and actin rearrangement. Mol. Ther. 10:1011–1022 (2004).PubMedGoogle Scholar
  20. 20.
    R. Fischer, K. Kohler, M. Fotin-Mleczek, and R. Brock. A stepwise dissection of the intracellular fate of cationic cell-penetrating peptides. J. Biol. Chem. 279:12625–12635 (2004).PubMedGoogle Scholar
  21. 21.
    T. B. Potocky, A. K. Menon, and S. H. Gellman. Cytoplasmic and nuclear delivery of a TAT-derived peptide and a beta-peptide after endocytic uptake into HeLa cells. J. Biol. Chem. 278:50188–50194 (2003).PubMedGoogle Scholar
  22. 22.
    J. S. Wadia, R. V. Stan, and S. F. Dowdy. Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat. Med. 10:310–315 (2004).PubMedGoogle Scholar
  23. 23.
    A. Fittipaldi, A. Ferrari, M. Zoppe, C. Arcangeli, V. Pellegrini, F. Beltram, and M. Giacca. Cell membrane lipid rafts mediate caveolar endocytosis of HIV-1 Tat fusion proteins. J. Biol. Chem. 278:34141–34149 (2003).PubMedGoogle Scholar
  24. 24.
    S. Console, C. Marty, C. Garcia-Echeverria, R. Schwendener, and K. Ballmer-Hofer. Antennapedia and HIV transactivator of transcription (TAT) “protein transduction domains” promote endocytosis of high molecular weight cargo upon binding to cell surface glycosaminoglycans. J. Biol. Chem. 278:35109–35114 (2003).PubMedGoogle Scholar
  25. 25.
    J. C. Mai, H. Shen, S. C. Watkins, T. Cheng, and P. D. Robbins. Efficiency of protein transduction is cell type-dependent and is enhanced by dextran sulfate. J. Biol. Chem. 277:30208–30218 (2002).PubMedGoogle Scholar
  26. 26.
    C. H. Tung and R. Weissleder. Arginine containing peptides as delivery vectors. Adv. Drug. Deliv. Rev. 55:281–294 (2003).PubMedGoogle Scholar
  27. 27.
    J. L. Zaro and W. C. Shen. Evidence that membrane transduction of oligoarginine does not require vesicle formation. Exp. Cell. Res. 307:164–173 (2005).PubMedGoogle Scholar
  28. 28.
    J. A. Leifert, S. Harkins, and J. L. Whitton. Full-length proteins attached to the HIV tat protein transduction domain are neither transduced between cells, nor exhibit enhanced immunogenicity. Gene Ther. 9:1422–1428 (2002).PubMedGoogle Scholar
  29. 29.
    A. Astriab-Fisher, D. Sergueev, M. Fisher, B. R. Shaw, and R. L. Juliano. Conjugates of antisense oligonucleotides with the Tat and antennapedia cell-penetrating peptides: effects on cellular uptake, binding to target sequences, and biologic actions. Pharm. Res. 19:744–754 (2002).PubMedGoogle Scholar
  30. 30.
    P. O. Falnes, J. Wesche, and S. Olsnes. Ability of the Tat basic domain and VP22 to mediate cell binding, but not membrane translocation of the diphtheria toxin A-fragment. Biochemistry 40:4349–4358 (2001).PubMedGoogle Scholar
  31. 31.
    A. Eguchi, T. Akuta, H. Okuyama, T. Senda, H. Yokoi, H. Inokuchi, S. Fujita, T. Hayakawa, K. Takeda, M. Hasegawa, and M. Nakanishi. Protein transduction domain of HIV-1 Tat protein promotes efficient delivery of DNA into mammalian cells. J. Biol. Chem. 276:26204–26210 (2001).PubMedGoogle Scholar
  32. 32.
    G. Drin, S. Cottin, E. Blanc, A. R. Rees, and J. Temsamani. Studies on the internalization mechanism of cationic cell-penetrating peptides. J. Biol. Chem. 278:31192–31201 (2003).PubMedGoogle Scholar
  33. 33.
    M. Zhao and R. Weissleder. Intracellular cargo delivery using tat peptide and derivatives. Med. Res. Rev. 24:1–12 (2004).PubMedGoogle Scholar
  34. 34.
    H. J. Lee and W. M. Pardridge. Pharmacokinetics and delivery of tat and tat-protein conjugates to tissues in vivo. Bioconjug. Chem. 12:995–999 (2001).PubMedGoogle Scholar
  35. 35.
    A. Ho, S. R. Schwarze, S. J. Mermelstein, G. Waksman, and S. F. Dowdy. Synthetic protein transduction domains: enhanced transduction potential in vitro and in vivo. Cancer Res. 61:474–477 (2001).PubMedGoogle Scholar
  36. 36.
    S. R. Schwarze, K. A. Hruska, and S. F. Dowdy. Protein transduction: unrestricted delivery into all cells? Trends Cell. Biol. 10:290–295 (2000).PubMedGoogle Scholar
  37. 37.
    J. B. Rothbard, S. Garlington, Q. Lin, T. Kirschberg, E. Kreider, P. L. McGrane, P. A. Wender, and P. A. Khavari. Conjugation of arginine oligomers to cyclosporin A facilitates topical delivery and inhibition of inflammation. Nat. Med. 6:1253–1257 (2000).PubMedGoogle Scholar
  38. 38.
    M. Lewin, N. Carlesso, C. H. Tung, X. W. Tang, D. Cory, D. T. Scadden, and R. Weissleder. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat. Biotechnol. 18:410–414 (2000).PubMedGoogle Scholar
  39. 39.
    S. R. Schwarze, A. Ho, A. Vocero-Akbani, and S. F. Dowdy. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285:1569–1572 (1999).PubMedGoogle Scholar
  40. 40.
    V. Polyakov, V. Sharma, J. L. Dahlheimer, C. M. Pica, G. D. Luker, and D. Piwnica-Worms. Novel Tat-peptide chelates for direct transduction of technetium-99 m and rhenium into human cells for imaging and radiotherapy. Bioconjug. Chem. 11:762–771 (2000).PubMedGoogle Scholar
  41. 41.
    B. X. Chen and B. F. Erlanger. Intracellular delivery of monoclonal antibodies. Immunol. Lett. 84:63–67 (2002).PubMedGoogle Scholar
  42. 42.
    J. L. Zaro and W. C. Shen. Cytosolic delivery of a p16-peptide oligoarginine conjugate for inhibiting proliferation of MCF7 cells. J. Control. Release 108:409–417 (2005).PubMedGoogle Scholar
  43. 43.
    M. Silhol, M. Tyagi, M. Giacca, B. Lebleu, and E. Vives. Different mechanisms for cellular internalization of the HIV-1 Tat-derived cell penetrating peptide and recombinant proteins fused to Tat. Eur. J. Biochem. 269:494–501 (2002).PubMedGoogle Scholar
  44. 44.
    P. E. Thoren, D. Persson, P. Isakson, M. Goksor, A. Onfelt, and B. Norden. Uptake of analogs of penetratin, Tat(48–60) and oligoarginine in live cells. Biochem. Biophys. Res. Commun. 307:100–107 (2003).PubMedGoogle Scholar
  45. 45.
    A. Elmquist and U. Langel. In vitro uptake and stability study of pVEC and its all-D analog. Biol. Chem. 384:387–393 (2003).PubMedGoogle Scholar
  46. 46.
    D. Terrone, S. L. Sang, L. Roudaia, and J. R. Silvius. Penetratin and related cell-penetrating cationic peptides can translocate across lipid bilayers in the presence of a transbilayer potential. Biochemistry 42:13787–13799 (2003).PubMedGoogle Scholar
  47. 47.
    H. Binder and G. Lindblom. Charge-dependent translocation of the Trojan peptide penetratin across lipid membranes. Biophys. J. 85:982–995 (2003).PubMedGoogle Scholar
  48. 48.
    H. Nagahara, A. M. Vocero-Akbani, E. L. Snyder, A. Ho, D. G. Latham, N. A. Lissy, M. Becker-Hapak, S. A. Ezhevsky, and S. F. Dowdy. Transduction of full-length TAT fusion proteins into mammalian cells: TAT-p27Kip1 induces cell migration. Nat. Med. 4:1449–1452 (1998).PubMedGoogle Scholar
  49. 49.
    A. Prochiantz. Messenger proteins: homeoproteins, TAT and others. Curr. Opin. Cell. Biol. 12:400–406 (2000).PubMedGoogle Scholar
  50. 50.
    A. Prochiantz. Homeodomain-derived peptides. In and out of the cells. Ann. N. Y. Acad. Sci. 886:172–179 (1999).PubMedGoogle Scholar
  51. 51.
    A. Ziegler, X. L. Blatter, A. Seelig, and J. Seelig. Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis. Biochemistry 42:9185–9194 (2003).PubMedGoogle Scholar
  52. 52.
    Z. Salamon, G. Lindblom, and G. Tollin. Plasmon-waveguide resonance and impedance spectroscopy studies of the interaction between penetratin and supported lipid bilayer membranes. Biophys. J. 84:1796–1807 (2003).PubMedGoogle Scholar
  53. 53.
    T. Takeuchi, M. Kosuge, A. Tadokoro, Y. Sugiura, M. Nishi, M. Kawata, N. Sakai, S. Matile, and S. Futaki. Direct and rapid cytosolic delivery using cell-penetrating peptides mediated by pyrenebutyrate. ACS Chem. Biol. 1:299–303 (2006).PubMedGoogle Scholar
  54. 54.
    N. Sakai, T. Takeuchi, S. Futaki, and S. Matile. Direct observation of anion-mediated translocation of fluorescent oligoarginine carriers into and across bulk liquid and anionic bilayer membranes. Chembiochem. 6:114–122 (2005).PubMedGoogle Scholar
  55. 55.
    N. Sakai and S. Matile. Anion-mediated transfer of polyarginine across liquid and bilayer membranes. J. Am. Chem. Soc. 125:14348–14356 (2003).PubMedGoogle Scholar
  56. 56.
    A. Ferrari, V. Pellegrini, C. Arcangeli, A. Fittipaldi, M. Giacca, and F. Beltram. Caveolae-mediated internalization of extracellular HIV-1 tat fusion proteins visualized in real time. Mol. Ther. 8:284–294 (2003).PubMedGoogle Scholar
  57. 57.
    S. D. Conner and S. L. Schmid. Regulated portals of entry into the cell. Nature 422:37–44 (2003).PubMedGoogle Scholar
  58. 58.
    I. A. Khalil, K. Kogure, S. Futaki, and H. Harashima. High density of octaarginine stimulates macropinocytosis leading to efficient intracellular trafficking for gene expression. J. Biol. Chem. 281:3544–3551 (2006).PubMedGoogle Scholar
  59. 59.
    M. Fretz, J. Jin, R. Conibere, N. A. Penning, S. Al-Taei, G. Storm, S. Futaki, T. Takeuchi, I. Nakase, and A. T. Jones. Effects of Na(+)/H(+) exchanger inhibitors on subcellular localisation of endocytic organelles and intracellular dynamics of protein transduction domains HIV-TAT peptide and octaarginine. J. Control. Release 116:247–254 (2006).PubMedGoogle Scholar
  60. 60.
    V. P. Torchilin, R. Rammohan, V. Weissig, and T. S. Levchenko. TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc. Natl. Acad. Sci. U. S. A. 98:8786–8791 (2001).PubMedGoogle Scholar
  61. 61.
    J. L. Zaro, T. E. Rajapaksa, C. T. Okamoto, and W. C. Shen. Membrane transduction of oligoarginine in HeLa cells is not mediated by macropinocytosis. Mol. Pharm. 3:181–186 (2006).PubMedGoogle Scholar
  62. 62.
    P. Saalik, A. Elmquist, M. Hansen, K. Padari, K. Saar, K. Viht, U. Langel, and M. Pooga. Protein cargo delivery properties of cell-penetrating peptides. A comparative study. Bioconjug. Chem. 15:1246–1253 (2004).PubMedGoogle Scholar
  63. 63.
    M. Tyagi, M. Rusnati, M. Presta, and M. Giacca. Internalization of HIV-1 tat requires cell surface heparan sulfate proteoglycans. J. Biol. Chem. 276:3254–3261 (2001).PubMedGoogle Scholar
  64. 64.
    M. Rusnati, G. Tulipano, D. Spillmann, E. Tanghetti, P. Oreste, G. Zoppetti, M. Giacca, and M. Presta. Multiple interactions of HIV-I Tat protein with size-defined heparin oligosaccharides. J. Biol. Chem. 274:28198–28205 (1999).PubMedGoogle Scholar
  65. 65.
    M. Rusnati, G. Tulipano, C. Urbinati, E. Tanghetti, R. Giuliani, M. Giacca, M. Ciomei, A. Corallini, and M. Presta. The basic domain in HIV-1 Tat protein as a target for polysulfonated heparin-mimicking extracellular Tat antagonists. J. Biol. Chem. 273:16027–16037 (1998).PubMedGoogle Scholar
  66. 66.
    M. Rusnati, D. Coltrini, P. Oreste, G. Zoppetti, A. Albini, D. Noonan, F. d’Adda di Fagagna, M. Giacca, and M. Presta. Interaction of HIV-1 Tat protein with heparin. Role of the backbone structure, sulfation, and size. J. Biol. Chem. 272:11313–11320 (1997).PubMedGoogle Scholar
  67. 67.
    S. M. Fuchsand R. T. Raines. Pathway for polyarginine entry into mammalian cells. Biochemistry 43:2438–2444 (2004).PubMedGoogle Scholar
  68. 68.
    S. Sandgren, F. Cheng, and M. Belting. Nuclear targeting of macromolecular polyanions by an HIV-Tat derived peptide. Role for cell-surface proteoglycans. J. Biol. Chem. 277:38877–38883 (2002).PubMedGoogle Scholar
  69. 69.
    E. Goncalves, E. Kitas, and J. Seelig. Binding of oligoarginine to membrane lipids and heparan sulfate: structural and thermodynamic characterization of a cell-penetrating peptide. Biochemistry 44:2692–2702 (2005).PubMedGoogle Scholar
  70. 70.
    A. Ziegler and J. Seelig. Interaction of the protein transduction domain of HIV-1 TAT with heparan sulfate: binding mechanism and thermodynamic parameters. Biophys. J. 86:254–263 (2004).PubMedCrossRefGoogle Scholar
  71. 71.
    S. Hakansson and M. Caffrey. Structural and dynamic properties of the HIV-1 tat transduction domain in the free and heparin-bound states. Biochemistry 42:8999–9006 (2003).PubMedGoogle Scholar
  72. 72.
    M. Green and P. M. Loewenstein. Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell 55:1179–1188 (1988).PubMedGoogle Scholar
  73. 73.
    A. D. Frankel and C. O. Pabo. Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55:1189–1193 (1988).PubMedGoogle Scholar
  74. 74.
    W. C. Shen and H. J. Ryser. Conjugation of poly-L-lysine to albumin and horseradish peroxidase: a novel method of enhancing the cellular uptake of proteins. Proc. Natl. Acad. Sci. U. S. A. 75:1872–1876 (1978).PubMedGoogle Scholar
  75. 75.
    H. J. Ryser and W. C. Shen. Conjugation of methotrexate to poly(L-lysine) increases drug transport and overcomes drug resistance in cultured cells. Proc. Natl. Acad. Sci. U. S. A. 75:3867–3870 (1978).PubMedGoogle Scholar
  76. 76.
    M. Yanagishita and V. C. Hascall. Cell surface heparan sulfate proteoglycans. J. Biol. Chem. 267:9451–9454 (1992).PubMedGoogle Scholar
  77. 77.
    J. A. Swanson and C. Watts. Macropinocytosis. Trends Cell. Biol. 5:424–428 (1995).PubMedGoogle Scholar
  78. 78.
    H. Michiue, K. Tomizawa, F. Y. Wei, M. Matsushita, Y. F. Lu, T. Ichikawa, T. Tamiya, I. Date, and H. Matsui. The NH2 terminus of influenza virus hemagglutinin-2 subunit peptides enhances the antitumor potency of polyarginine-mediated p53 protein transduction. J. Biol. Chem. 280:8285–8289 (2005).PubMedGoogle Scholar
  79. 79.
    J. R. Maiolo, 3rd, E. A. Ottinger, and M. Ferrer. Specific redistribution of cell-penetrating peptides from endosomes to the cytoplasm and nucleus upon laser illumination. J. Am. Chem. Soc. 126:15376–15377 (2004).PubMedGoogle Scholar
  80. 80.
    T. Shiraishi and P. E. Nielsen. Photochemically enhanced cellular delivery of cell penetrating peptide-PNA conjugates. FEBS Lett. 580:1451–1456 (2006).PubMedGoogle Scholar
  81. 81.
    D. Lechardeur and G. L. Lukacs. Nucleocytoplasmic transport of plasmid DNA: a perilous journey from the cytoplasm to the nucleus. Hum. Gene. Ther. 17:882–889 (2006).PubMedGoogle Scholar
  82. 82.
    A. Ziegler, P. Nervi, M. Durrenberger, and J. Seelig. The cationic cell-penetrating peptide CPP(TAT) derived from the HIV-1 protein TAT is rapidly transported into living fibroblasts: optical, biophysical, and metabolic evidence. Biochemistry 44:138–148 (2005).PubMedGoogle Scholar
  83. 83.
    M. Zorko and U. Langel. Cell-penetrating peptides: mechanism and kinetics of cargo delivery. Adv. Drug. Deliv. Rev. 57:529–545 (2005).PubMedGoogle Scholar
  84. 84.
    R. Truant and B. R. Cullen. The arginine-rich domains present in human immunodeficiency virus type 1 Tat and Rev function as direct importin beta-dependent nuclear localization signals. Mol. Cell Biol. 19:1210–1217 (1999).PubMedGoogle Scholar
  85. 85.
    W. J. Gehring, Y. Q. Qian, M. Billeter, K. Furukubo-Tokunaga, A. F. Schier, D. Resendez-Perez, M. Affolter, G. Otting, and K. Wuthrich. Homeodomain-DNA recognition. Cell 78:211–223 (1994).PubMedGoogle Scholar
  86. 86.
    J. Adams. The proteasome: structure, function, and role in the cell. Cancer Treat. Rev. 29 (Suppl 1):3–9 (2003).PubMedGoogle Scholar
  87. 87.
    M. H. Glickman and A. Ciechanover. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol. Rev. 82:373–428 (2002).PubMedGoogle Scholar
  88. 88.
    E. Geier, G. Pfeifer, M. Wilm, M. Lucchiari-Hartz, W. Baumeister, K. Eichmann, and G. Niedermann. A giant protease with potential to substitute for some functions of the proteasome. Science 283:978–981 (1999).PubMedGoogle Scholar
  89. 89.
    R. Trehin, H. M. Nielsen, H. G. Jahnke, U. Krauss, A. G. Beck-Sickinger, and H. P. Merkle. Metabolic cleavage of cell-penetrating peptides in contact with epithelial models: human calcitonin (hCT)-derived peptides, Tat(47–57) and penetratin(43–58). Biochem. J. 382:945–956 (2004).PubMedGoogle Scholar
  90. 90.
    D. L. Kolson, R. Collman, R. Hrin, J. W. Balliet, M. Laughlin, K. A. McGann, C. Debouck, and F. Gonzalez-Scarano. Human immunodeficiency virus type 1 Tat activity in human neuronal cells: uptake and trans-activation. J. Gen. Virol. 75 (Pt 8):1927–1934 (1994).PubMedCrossRefGoogle Scholar
  91. 91.
    M. E. Lindgren, M. M. Hallbrink, A. M. Elmquist, and U. Langel. Passage of cell-penetrating peptides across a human epithelial cell layer in vitro. Biochem. J. 377:69–76 (2004).PubMedGoogle Scholar
  92. 92.
    S. Violini, V. Sharma, J. L. Prior, M. Dyszlewski, and D. Piwnica-Worms. Evidence for a plasma membrane-mediated permeability barrier to Tat basic domain in well-differentiated epithelial cells: lack of correlation with heparan sulfate. Biochemistry 41:12652–12661 (2002).PubMedGoogle Scholar
  93. 93.
    R. Trehin, U. Krauss, A. G. Beck-Sickinger, H. P. Merkle, and H. M. Nielsen. Cellular uptake but low permeation of human calcitonin-derived cell penetrating peptides and Tat(47–57) through well-differentiated epithelial models. Pharm. Res. 21:1248–1256 (2004).PubMedGoogle Scholar
  94. 94.
    J. F. Liang and V. C. Yang. Insulin-cell penetrating peptide hybrids with improved intestinal absorption efficiency. Biochem. Biophys. Res. Commun. 335:734–738 (2005).PubMedGoogle Scholar
  95. 95.
    A. M. Koch, F. Reynolds, H. P. Merkle, R. Weissleder, and L. Josephson. Transport of surface-modified nanoparticles through cell monolayers. Chembiochem 6:337–345 (2005).PubMedGoogle Scholar
  96. 96.
    C. Rousselle, P. Clair, J. M. Lefauconnier, M. Kaczorek, J. M. Scherrmann, and J. Temsamani. New advances in the transport of doxorubicin through the blood-brain barrier by a peptide vector-mediated strategy. Mol. Pharmacol. 57:679–86 (2000).PubMedGoogle Scholar
  97. 97.
    G. P. Dietz, P. C. Valbuena, B. Dietz, K. Meuer, P. Mueller, J. H. Weishaupt, and M. Bahr. Application of a blood-brain-barrier-penetrating form of GDNF in a mouse model for Parkinson’s disease. Brain Res. 1082:61–66 (2006).PubMedGoogle Scholar
  98. 98.
    S. Santra, H. Yang, J. T. Stanley, P. H. Holloway, B. M. Moudgil, G. Walter, and R. A. Mericle. Rapid and effective labeling of brain tissue using TAT-conjugated CdS:Mn/ZnS quantum dots. Chem. Commun. (Camb) 3144–3146 (2005).Google Scholar
  99. 99.
    E. L. Snyder and S. F. Dowdy. Recent advances in the use of protein transduction domains for the delivery of peptides, proteins and nucleic acids in vivo. Expert Opin. Drug Deliv. 2:43–51 (2005).PubMedGoogle Scholar
  100. 100.
    G. P. Dietz and M. Bahr. Delivery of bioactive molecules into the cell: the Trojan horse approach. Mol. Cell. Neurosci. 27:85–131 (2004).PubMedGoogle Scholar
  101. 101.
    M. Lindgren, K. Rosenthal-Aizman, K. Saar, E. Eiriksdottir, Y. Jiang, M. Sassian, P. Ostlund, M. Hallbrink, and U. Langel. Overcoming methotrexate resistance in breast cancer tumour cells by the use of a new cell-penetrating peptide. Biochem. Pharmacol. 71:416–425 (2006).PubMedGoogle Scholar
  102. 102.
    L. Chaloin, P. Bigey, C. Loup, M. Marin, N. Galeotti, M. Piechaczyk, F. Heitz, and B. Meunier. Improvement of porphyrin cellular delivery and activity by conjugation to a carrier peptide. Bioconjug. Chem. 12:691–700 (2001).PubMedGoogle Scholar
  103. 103.
    J. Brunner and J. K. Barton. Targeting DNA mismatches with rhodium intercalators functionalized with a cell-penetrating peptide. Biochemistry 45:12295–12302 (2006).PubMedGoogle Scholar
  104. 104.
    C. J. Sherr. Principles of tumor suppression. Cell 116:235–246 (2004).PubMedGoogle Scholar
  105. 105.
    R. Fahraeus, S. Lain, K. L. Ball, and D. P. Lane. Characterization of the cyclin-dependent kinase inhibitory domain of the INK4 family as a model for a synthetic tumour suppressor molecule. Oncogene 16:587–596 (1998).PubMedGoogle Scholar
  106. 106.
    R. Hosotani, Y. Miyamoto, K. Fujimoto, R. Doi, A. Otaka, N. Fujii, and M. Imamura. Trojan p16 peptide suppresses pancreatic cancer growth and prolongs survival in mice. Clin. Cancer Res. 8:1271–1276 (2002).PubMedGoogle Scholar
  107. 107.
    C. Craig, M. Kim, E. Ohri, R. Wersto, D. Katayose, Z. Li, Y. H. Choi, B. Mudahar, S. Srivastava, P. Seth, and K. Cowan. Effects of adenovirus-mediated p16INK4A expression on cell cycle arrest are determined by endogenous p16 and Rb status in human cancer cells. Oncogene 16:265–272 (1998).PubMedGoogle Scholar
  108. 108.
    H. Y. Wu, K. Tomizawa, M. Matsushita, Y. F. Lu, S. T. Li, and H. Matsui. Poly-arginine-fused calpastatin peptide, a living cell membrane-permeable and specific inhibitor for calpain. Neurosci. Res. 47:131–135 (2003).PubMedGoogle Scholar
  109. 109.
    B. Law, L. Quinti, Y. Choi, R. Weissleder, and C. H. Tung. A mitochondrial targeted fusion peptide exhibits remarkable cytotoxicity. Mol. Cancer Ther. 5:1944–1949 (2006).PubMedGoogle Scholar
  110. 110.
    H. Yan, J. Thomas, T. Liu, D. Raj, N. London, T. Tandeski, S. A. Leachman, R. M. Lee, and D. Grossman. Induction of melanoma cell apoptosis and inhibition of tumor growth using a cell-permeable Survivin antagonist. Oncogene 25:6968–6974 (2006).PubMedGoogle Scholar
  111. 111.
    R. Diem, N. Taheri, G. P. Dietz, A. Kuhnert, K. Maier, M. B. Sattler, I. Gadjanski, D. Merkler, and M. Bahr. HIV-Tat-mediated Bcl-XL delivery protects retinal ganglion cells during experimental autoimmune optic neuritis. Neurobiol. Dis. 20:218–226 (2005).PubMedGoogle Scholar
  112. 112.
    M. F. Ross and M. P. Murphy. Cell-penetrating peptides are excluded from the mitochondrial matrix. Biochem. Soc. Trans. 32:1072–1074 (2004).PubMedGoogle Scholar
  113. 113.
    M. F. Ross, A. Filipovska, R. A. Smith, M. J. Gait, and M. P. Murphy. Cell-penetrating peptides do not cross mitochondrial membranes even when conjugated to a lipophilic cation: evidence against direct passage through phospholipid bilayers. Biochem. J. 383:457–468 (2004).PubMedGoogle Scholar
  114. 114.
    I. N. Shokolenko, M. F. Alexeyev, S. P. LeDoux, and G. L. Wilson. TAT-mediated protein transduction and targeted delivery of fusion proteins into mitochondria of breast cancer cells. DNA Repair (Amst) 4:511–518 (2005).Google Scholar
  115. 115.
    L. Cao, J. Si, W. Wang, X. Zhao, X. Yuan, H. Zhu, X. Wu, J. Zhu, and G. Shen. Intracellular localization and sustained prodrug cell killing activity of TAT-HSVTK fusion protein in hepatocelullar carcinoma cells. Mol. Cells. 21:104–111 (2006).PubMedGoogle Scholar
  116. 116.
    I. A. Ignatovich, E. B. Dizhe, A. V. Pavlotskaya, B. N. Akifiev, S. V. Burov, S. V. Orlov, and A. P. Perevozchikov. Complexes of plasmid DNA with basic domain 47–57 of the HIV-1 Tat protein are transferred to mammalian cells by endocytosis-mediated pathways. J. Biol. Chem. 278:42625–42636 (2003).PubMedGoogle Scholar
  117. 117.
    I. A. Khalil, S. Futaki, M. Niwa, Y. Baba, N. Kaji, H. Kamiya, and H. Harashima. Mechanism of improved gene transfer by the N-terminal stearylation of octaarginine: enhanced cellular association by hydrophobic core formation. Gene Ther. 11:636–644 (2004).PubMedGoogle Scholar
  118. 118.
    D. Soundara Manickam, H. S. Bisht, L. Wan, G. Mao, and D. Oupicky. Influence of TAT-peptide polymerization on properties and transfection activity of TAT/DNA polyplexes. J. Control. Release 102:293–306 (2005).PubMedGoogle Scholar
  119. 119.
    Z. Liu, M. Li, D. Cui, and J. Fei. Macro-branched cell-penetrating peptide design for gene delivery. J. Control. Release 102:699–710 (2005).PubMedGoogle Scholar
  120. 120.
    C. Rudolph, C. Plank, J. Lausier, U. Schillinger, R. H. Muller, and J. Rosenecker. Oligomers of the arginine-rich motif of the HIV-1 TAT protein are capable of transferring plasmid DNA into cells. J. Biol. Chem. 278:11411–11418 (2003).PubMedGoogle Scholar
  121. 121.
    C. H. Tung, S. Mueller, and R. Weissleder. Novel branching membrane translocational peptide as gene delivery vector. Bioorg. Med. Chem. 10:3609–3614 (2002).PubMedGoogle Scholar
  122. 122.
    E. Kleemann, M. Neu, N. Jekel, L. Fink, T. Schmehl, T. Gessler, W. Seeger, and T. Kissel. Nano-carriers for DNA delivery to the lung based upon a TAT-derived peptide covalently coupled to PEG-PEI. J. Control. Release 109:299–316 (2005).PubMedGoogle Scholar
  123. 123.
    K. Kilk, S. El-Andaloussi, P. Jarver, A. Meikas, A. Valkna, T. Bartfai, P. Kogerman, M. Metsis, and U. Langel. Evaluation of transportan 10 in PEI mediated plasmid delivery assay. J. Control. Release 103:511–523 (2005).PubMedGoogle Scholar
  124. 124.
    J. Zielinski, K. Kilk, T. Peritz, T. Kannanayakal, K. Y. Miyashiro, E. Eiriksdottir, J. Jochems, U. Langel, and J. Eberwine. In vivo identification of ribonucleoprotein-RNA interactions. Proc. Natl. Acad. Sci. U. S. A. 103:1557–1562 (2006).PubMedGoogle Scholar
  125. 125.
    W. J. Kim, L. V. Christensen, S. Jo, J. W. Yockman, J. H. Jeong, Y. H. Kim, and S. W. Kim. Cholesteryl oligoarginine delivering vascular endothelial growth factor siRNA effectively inhibits tumor growth in colon adenocarcinoma. Mol. Ther. 14:343–350 (2006).PubMedGoogle Scholar
  126. 126.
    A. Muratovska and M. R. Eccles. Conjugate for efficient delivery of short interfering RNA (siRNA) into mammalian cells. FEBS Lett. 558:63–68 (2004).PubMedGoogle Scholar
  127. 127.
    M. Zhao, M. F. Kircher, L. Josephson, and R. Weissleder. Differential conjugation of tat peptide to superparamagnetic nanoparticles and its effect on cellular uptake. Bioconjug. Chem. 13:840–844 (2002).PubMedGoogle Scholar
  128. 128.
    C. Zhang, N. Tang, X. Liu, W. Liang, W. Xu, and V. P. Torchilin. siRNA-containing liposomes modified with polyarginine effectively silence the targeted gene. J. Control. Release 112:229–239 (2006).PubMedGoogle Scholar
  129. 129.
    R. M. Sawant, J. P. Hurley, S. Salmaso, A. Kale, E. Tolcheva, T. S. Levchenko, and V. P. Torchilin. “SMART” drug delivery systems: double-targeted pH-responsive pharmaceutical nanocarriers. Bioconjug. Chem. 17:943–949 (2006).PubMedGoogle Scholar
  130. 130.
    J. M. de la Fuente and C. C. Berry. Tat peptide as an efficient molecule to translocate gold nanoparticles into the cell nucleus. Bioconjug. Chem. 16:1176–1180 (2005).PubMedGoogle Scholar
  131. 131.
    O. A. Garden, P. R. Reynolds, J. Yates, D. J. Larkman, F. M. Marelli-Berg, D. O. Haskard, A. D. Edwards, and A. J. George. A rapid method for labelling CD4+ T cells with ultrasmall paramagnetic iron oxide nanoparticles for magnetic resonance imaging that preserves proliferative, regulatory and migratory behaviour in vitro. J. Immunol. Methods 314:123–133 (2006).PubMedGoogle Scholar
  132. 132.
    L. Hirt, J. Badaut, J. Thevenet, C. Granziera, L. Regli, F. Maurer, C. Bonny, and J. Bogousslavsky. D-JNKI1, a cell-penetrating c-Jun-N-terminal kinase inhibitor, protects against cell death in severe cerebral ischemia. Stroke 35:1738–1743 (2004).PubMedGoogle Scholar
  133. 133.
    M. Aarts, Y. Liu, L. Liu, S. Besshoh, M. Arundine, J. W. Gurd, Y. T. Wang, M. W. Salter, M. Tymianski. Treatment of ischemic brain damage by perturbing NMDA receptor- PSD-95 protein interactions. Science 298:846–850 (2002).PubMedGoogle Scholar
  134. 134.
    G. Cao, W. Pei, H. Ge, Q. Liang, Y. Luo, F. R. Sharp, A. Lu, R. Ran, S. H. Graham, and J. Chen. In Vivo Delivery of a Bcl-xL Fusion Protein Containing the TAT Protein Transduction Domain Protects against Ischemic Brain Injury and Neuronal Apoptosis. J. Neurosci. 22:5423–5431 (2002).PubMedGoogle Scholar
  135. 135.
    S. Myou, A. R. Leff, S. Myo, E. Boetticher, J. Tong, A. Y. Meliton, J. Liu, N. M. Munoz, and X. Zhu. Blockade of inflammation and airway hyperresponsiveness in immune-sensitized mice by dominant-negative phosphoinositide 3-kinase-TAT. J. Exp. Med. 198:1573–1582 (2003).PubMedGoogle Scholar
  136. 136.
    J. C. Clohisy, B. C. Roy, C. Biondo, E. Frazier, D. Willis, S. L. Teitelbaum, and Y. Abu-Amer. Direct inhibition of NF-kappa B blocks bone erosion associated with inflammatory arthritis. J. Immunol. 171:5547–5553 (2003).PubMedGoogle Scholar
  137. 137.
    E. L. Snyder, B. R. Meade, C. C. Saenz, and S. F. Dowdy. Treatment of terminal peritoneal carcinomatosis by a transducible p53-activating peptide. PLoS. Biol. 2:E36 (2004).PubMedGoogle Scholar
  138. 138.
    S. Fulda, W. Wick, M. Weller, and K. M. Debatin. Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nat. Med. 8:808–815 (2002).PubMedGoogle Scholar
  139. 139.
    L. Yang, T. Mashima, S. Sato, M. Mochizuki, H. Sakamoto, T. Yamori, T. Oh-Hara, and T. Tsuruo. Predominant suppression of apoptosome by inhibitor of apoptosis protein in non-small cell lung cancer H460 cells: therapeutic effect of a novel polyarginine-conjugated Smac peptide. Cancer Res. 63:831–837 (2003).PubMedGoogle Scholar
  140. 140.
    T. Jiang, E. S. Olson, Q. T. Nguyen, M. Roy, P. A. Jennings, and R. Y. Tsien. Tumor imaging by means of proteolytic activation of cell-penetrating peptides. Proc. Natl. Acad. Sci. U. S. A. 101:17867–17872 (2004).PubMedGoogle Scholar
  141. 141.
    M. Inoue, M. Mukai, Y. Hamanaka, M. Tatsuta, M. Hiraoka, and S. Kizaka-Kondoh. Targeting hypoxic cancer cells with a protein prodrug is effective in experimental malignant ascites. Int. J. Oncol. 25:713–720 (2004).PubMedGoogle Scholar
  142. 142.
    J. L. Goldstein, M. S. Brown, R. G. Anderson, D. W. Russell, and W. J. Schneider. Receptor-mediated endocytosis: concepts emerging from the LDL receptor system. Annu. Rev. Cell. Biol. 1:1–39 (1985).PubMedGoogle Scholar
  143. 143.
    V. P. Torchilin, T. S. Levchenko, R. Rammohan, N. Volodina, B. Papahadjopoulos-Sternberg, and G. G. D’Souza. Cell transfection in vitro and in vivo with nontoxic TAT peptide-liposome-DNA complexes. Proc. Natl. Acad. Sci. U. S. A. 100:1972–1977 (2003).PubMedGoogle Scholar
  144. 144.
    C. Rousselle, M. Smirnova, P. Clair, J. M. Lefauconnier, A. Chavanieu, B. Calas, J. M. Scherrmann, and J. Temsamani. Enhanced delivery of doxorubicin into the brain via a peptide-vector-mediated strategy: saturation kinetics and specificity. J. Pharmacol. Exp. Ther. 296:124–131 (2001).PubMedGoogle Scholar
  145. 145.
    J. R. Maiolo, M. Ferrer, and E. A. Ottinger. Effects of cargo molecules on the cellular uptake of arginine-rich cell-penetrating peptides. Biochim. Biophys. Acta. 1712:161–172 (2005).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Leena N. Patel
    • 1
  • Jennica L. Zaro
    • 1
  • Wei-Chiang Shen
    • 1
  1. 1.Department of Pharmacology and Pharmaceutical Sciences, School of PharmacyUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations