Skip to main content

Advertisement

Log in

Chemogenomic Analysis Identifies Geldanamycins as Substrates and Inhibitors of ABCB1

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

A prerequisite for geldanamycin (GA, NSC122750) to targeting heat shock protein 90 and inhibiting tumor growth is sufficient intracellular drug accumulation. We hypothesized that membrane transporters on tumor cells determine at least in part the response to GA analogues.

Materials and Methods

To facilitate a systematic study of chemosensitivity across a group of GA analogues with similar chemical structures, we correlated mRNA expression profiles of most known transporters with growth inhibitory potencies of compounds in 60 tumor cell lines (NCI-60). We subsequently validated the gene-drug correlations using cytotoxicity and transport assays.

Results

Geldanamycin analogues displayed a range of negative correlations coefficients with ABCB1 (MDR1, or P-glycoprotein) expression. Suppressing ABCB1 in multidrug resistant cells (NCI/ADR-RES and K562/DOX) and ABCB1-transfected cells (BC19) increased sensitivity to GA analogues, as expected for substrates. Moreover, ABCB1-mediated efflux of daunorubicin in K562/DOX cells could be blocked markedly by GA analogues in a dose-dependent fashion. The IC50 values (half-maximum inhibition of daunorubicin efflux) were 5.5, 7.3 and 12 μM for macbecin II (NSC330500), 17-AAG (NSC330507) and GA, respectively.

Conclusions

These observations demonstrate that GA analogues are substrates as well as inhibitors of ABCB1, suggesting that drug interactions between GA analogues and other agents that are ABCB1 substrates may occur via ABCB1 in normal or tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

NCI:

The National Cancer Institute

DTP:

Developmental Therapeutics Program

SiRNA:

small interfering RNA

ABC:

ATP-binding cassette

SRB:

sulforhodamine B

GA:

geldanamycin

Hsp90:

heat shock protein 90

References

  1. Y. Huang and W. Sadee. Drug sensitivity and resistance genes in cancer chemotherapy: a chemogenomics approach. Drug. Discov. Today 8:356–363 (2003).

    Article  PubMed  CAS  Google Scholar 

  2. U. Scherf, D. T. Ross, M. Waltham, L. H. Smith, J. K. Lee, L. Tanabe, K. W. Kohn, W. C. Reinhold, T. G. Myers, D. T. Andrews, D. A. Scudiero, M. B. Eisen, E. A. Sausville, Y. Pommier, D. Botstein, P. O. Brown, and J. N. Weinstein. A gene expression database for the molecular pharmacology of cancer. Nat. Genet. 24:236–344 (2000).

    Article  PubMed  CAS  Google Scholar 

  3. Y. Huang, P. Anderle, K. J. Bussey, C. Barbacioru, U. Shankavaram, Z. Dai, W. C. Reinhold, A. Papp, J. N. Weinstein, and W. Sadee. Membrane transporters and channels: role of the transportome in cancer chemosensitivity and chemoresistance. Cancer Res. 64:4294–4301 (2004).

    Article  PubMed  CAS  Google Scholar 

  4. Y. Huang, P. E. Blower, C. Yang, C. Barbacioru, Z. Dai, Y. Zhang, J. J. Xiao, K. K. Chan, and W. Sadee. Correlating gene expression with chemical scaffolds of cytotoxic agents: ellipticines as substrates and inhibitors of MDR1. Pharmacogenomics J. 5:112–125 (2005).

    Article  PubMed  CAS  Google Scholar 

  5. L. Whitesell, E. G. Mimnaugh, B. De Costa, C. E. Myers, and L. M. Neckers. Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc. Natl. Acad. Sci. U. S. A. 91:8324–8328 (1994).

    Article  PubMed  CAS  Google Scholar 

  6. V. Smith, E. A. Sausville, R. F. Camalier, H. H. Fiebig, and A. M. Burger. Comparison of 17-dimethylaminoethylamino-17-demethoxy-geldanamycin (17DMAG) and 17-allylamino-17-demethoxygeldanamycin (17AAG) in vitro: effects on Hsp90 and client proteins in melanoma models. Cancer Chemother. Pharmacol. 56:126–137 (2005).

    Article  PubMed  CAS  Google Scholar 

  7. G. Chiosis, H. Huezo, N. Rosen, E. Mimnaugh, L. Whitesell, and L. Neckers. 17AAG: low target binding affinity and potent cell activity—finding an explanation. Mol. Cancer Ther. 2:123–129 (2003).

    PubMed  CAS  Google Scholar 

  8. S. Scala, N. Akhmed, U. S. Rao, K. Paull, L. B. Lan, B. Dickstein, J. S. Lee, G. H. Elgemeie, W. D. Stein, and S. E. Bates. P-glycoprotein substrates and antagonists cluster into two distinct groups. Mol. Pharmacol. 51:1024– 1033 (1997).

    PubMed  CAS  Google Scholar 

  9. A. Monks, D. A. Scudiero, G. S. Johnson, K. D. Paull, and E. A. Sausville. The NCI anti-cancer drug screen: a smart screen to identify effectors of novel targets. Anticancer Drug Des. 12:533–541 (1997).

    PubMed  CAS  Google Scholar 

  10. J. N. Weinstein, T. G. Myers, P. M. O’Connor, S. H. Friend, A. J. Fornace, Jr., K. W. Kohn, T. Fojo, S. E. Bates, L. V. Rubinstein, N. L. Anderson, J. K. Buolamwini, W. W. van Osdol, A. P. Monks, D. A. Scudiero, E. A. Sausville, D. W. Zaharevitz, B. Bunow, V. N. Viswanadhan, G. S. Johnson, R. E. Wittes, and K. D. Paull. An information-intensive approach to the molecular pharmacology of cancer. Science 275:343–349 (1997).

    Article  PubMed  CAS  Google Scholar 

  11. B. Efronand and R. Tibshirani. An introduction to the bootstrap, Chapman & Hall, London, 1993.

    Google Scholar 

  12. J. P. Marie, A. M. Faussat-Suberville, D. Zhou, and R. Zittoun. Daunorubicin uptake by leukemic cells: correlations with treatment outcome and mdr1 expression. Leukemia 7:825–831 (1993).

    PubMed  CAS  Google Scholar 

  13. P. Skehan, R. Storeng, D. Scudiero, A. Monks, J. McMahon, D. Vistica, J. T. Warren, H. Bokesch, S. Kenney, and M. R. Boyd. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst. 82:1107–1112 (1990).

    Article  PubMed  CAS  Google Scholar 

  14. T. L. Riss and R. A. Moravec. Use of multiple assay endpoints to investigate the effects of incubation time, dose of toxin, and plating density in cell-based cytotoxicity assays. Assay Drug Dev. Technol. 2:51–62 (2004).

    Article  CAS  Google Scholar 

  15. Y. Huang, Z. Dai, C. Barbacioru, and W. Sadee. Cystine-glutamate transporter SLC7A11 in cancer chemosensitivity and chemoresistance. Cancer Res. 65:7446–7454 (2005).

    Article  PubMed  CAS  Google Scholar 

  16. E. J. Wang, C. N. Casciano, R. P. Clement, and W. W. Johnson. In vitro flow cytometry method to quantitatively assess inhibitors of P-glycoprotein. Drug Metab. Dispos. 28:522–528 (2000).

    PubMed  CAS  Google Scholar 

  17. Z. Q. Tian, Y. Liu, D. Zhang, Z. Wang, S. D. Dong, C. W. Carreras, Y. Zhou, G. Rastelli, D. V. Santi, and D. C. Myles. Synthesis and biological activities of novel 17-aminogeldanamycin derivatives. Bioorg. Med. Chem. 12:5317–5329 (2004).

    Article  PubMed  CAS  Google Scholar 

  18. D. Li and J. L. Au. Mdr1 transfection causes enhanced apoptosis by paclitaxel: an effect independent of drug efflux function of P-glycoprotein. Pharm. Res. 18:907–913 (2001).

    Article  PubMed  CAS  Google Scholar 

  19. J. Baselga and C. L. Arteaga. Critical update and emerging trends in epidermal growth factor receptor targeting in cancer. J. Clin. Oncol. 23:2445–2459 (2005).

    Article  PubMed  CAS  Google Scholar 

  20. Z. Dai, H. Huang, W. Sadee, and P. E. Blower. Chemoinformatics analysis identifies cytotoxic compounds susceptible to chemoresistance mediated by glutathione and cystine/glutamate transport system. J. Med. Chem. 50:1896–1906 (2007).

    Article  CAS  Google Scholar 

  21. S. da Rocha Dias, F. Friedlos, Y. Light, C. Springer, P. Workman, and R. Marais. Activated B-RAF is an Hsp90 client protein that is targeted by the anticancer drug 17-allylamino-17-demethoxygeldanamycin. Cancer Res. 65:10686–10691 (2005).

    Article  PubMed  CAS  Google Scholar 

  22. Z. N. Demidenko, W. G. An, J. T. Lee, L. Y. Romanova, J. A. McCubrey, and M. V. Blagosklonny. Kinase-addiction and bi-phasic sensitivity-resistance of Bcr-Abl-and Raf-1-expressing cells to imatinib and geldanamycin. Cancer Biol. Ther. 4:484–490 (2005).

    Article  PubMed  CAS  Google Scholar 

  23. F. Guo, K. Rocha, P. Bali, M. Pranpat, W. Fiskus, S. Boyapalle, S. Kumaraswamy, M. Balasis, B. Greedy, E. S. Armitage, N. Lawrence, and K. Bhalla. Abrogation of heat shock protein 70 induction as a strategy to increase antileukemia activity of heat shock protein 90 inhibitor 17-allylamino-demethoxy geldanamycin. Cancer Res. 65:10536–10544 (2005).

    Article  PubMed  CAS  Google Scholar 

  24. A. Maloney, P. A. Clarke, and P. Workman. Genes and proteins governing the cellular sensitivity to HSP90 inhibitors: a mechanistic perspective. Curr. Cancer Drug Targets 3:331–341 (2003).

    Article  PubMed  CAS  Google Scholar 

  25. L. R. Kell and, S. Y. Sharp, P. M. Rogers, T. G. Myers, and P. Workman. DT-Diaphorase expression and tumor cell sensitivity to 17-allylamino, 17-demethoxygeldanamycin, an inhibitor of heat shock protein 90. J. Natl. Cancer Inst. 91:1940–1949 (1999).

    Article  Google Scholar 

  26. Y. Huang and W. Sadee. Membrane transporters and channels in chemoresistance and -sensitivity of tumor cells. Cancer Lett. 239:168–182 (2006).

    Article  PubMed  CAS  Google Scholar 

  27. K. V. Chin, I. Pastan, and M. M. Gottesman. Function and regulation of the human multidrug resistance gene. Adv. Cancer Res. 60:157–180 (1993).

    Article  PubMed  CAS  Google Scholar 

  28. M. M. Gottesman and I. Pastan. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu. Rev. Biochem. 62:385–427 (1993).

    Article  PubMed  CAS  Google Scholar 

  29. R. Perez-Tomas. Multidrug resistance: retrospect and prospects in anti-cancer drug treatment. Curr. Med. Chem. 13:1859–1876 (2006).

    Article  PubMed  CAS  Google Scholar 

  30. P. Anderle, Y. Huang, and W. Sadee. Intestinal membrane transport of drugs and nutrients: genomics of membrane transporters using expression microarrays. Eur. J. Pharm. Sci. 21:17–24 (2004).

    Article  PubMed  CAS  Google Scholar 

  31. M. J. Egorin, D. M. Rosen, J. H. Wolff, P. S. Callery, S. M. Musser, and J. L. Eiseman. Metabolism of 17-(allylamino)-17-demethoxygeldanamycin (NSC 330507) by murine and human hepatic preparations. Cancer Res. 58:2385–2396 (1998).

    PubMed  CAS  Google Scholar 

  32. V. J. Wacher, C. Y. Wu, and L. Z. Benet. Overlapping substrate specificities and tissue distribution of cytochrome P450 3A and P-glycoprotein: implications for drug delivery and activity in cancer chemotherapy. Mol. Carcinog. 13:129–134 (1995).

    Article  PubMed  CAS  Google Scholar 

  33. S. Kajiji, J. A. Dreslin, K. Grizzuti, and P. Gros. Structurally distinct MDR modulators show specific patterns of reversal against P-glycoproteins bearing unique mutations at serine939/941. Biochemistry 33:5041–5048 (1994).

    Article  PubMed  CAS  Google Scholar 

  34. A. Hamada, H. Miyano, H. Watanabe, and H. Saito. Interaction of imatinib mesilate with human P-glycoprotein. J. Pharmacol. Exp. Ther. 307:824–828 (2003).

    Article  PubMed  CAS  Google Scholar 

  35. M. P. Goetz, D. Toft, J. Reid, M. Ames, B. Stensgard, S. Safgren, A. A. Adjei, J. Sloan, P. Atherton, V. Vasile, S. Salazaar, A. Adjei, G. Croghan, and C. Erlichman. Phase I trial of 17-allylamino-17-demethoxygeldanamycin in patients with advanced cancer. J. Clin. Oncol. 23:1078–1087 (2005).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the staff of NCI DTP for generation of the pharmacological database used in this study. This work was supported by NIH grant GM61390 and by the Food and Drug Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11095_2007_9300_MOESM1_ESM.ppt

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Y., Blower, P.E., Liu, R. et al. Chemogenomic Analysis Identifies Geldanamycins as Substrates and Inhibitors of ABCB1. Pharm Res 24, 1702–1712 (2007). https://doi.org/10.1007/s11095-007-9300-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9300-x

Key words

Navigation