Skip to main content

Advertisement

Log in

Effects of Carrier on Disposition and Antitumor Activity of Intraperitoneal Paclitaxel

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The rationale for intraperitoneal (IP) chemotherapy is to expose peritoneal tumors to high drug concentrations. While multiple phase III trials have established the significant survival advantage by adding IP therapy to intravenous therapy in optimally debulked ovarian cancer patients, the use of IP chemotherapy is limited by the complications associated with indwelling catheters and by the local chemotherapy-related toxicity. The present study evaluated the effects of drug carrier on the disposition and efficacy of IP paclitaxel, for identifying strategies for further development of IP treatment.

Materials and Methods

Three paclitaxel formulations, i.e., Cremophor micelles, Cremophor-free paclitaxel-loaded gelatin nanoparticles and polymeric microparticles, were evaluated for peritoneal targeting advantage and antitumor activity in mice after IP injection. Whole body autoradiography and scanning electron microscopy were used to visualize the spatial drug distribution in tissues. A kinetic model, depicting the multiple processes involved in the peritoneal-to-plasma transfer of paclitaxel and its carriers, was established to determine the mechanisms by which a drug carrier alters the peritoneal targeting advantage.

Results

Autoradiographic results indicated that IP injection yielded much higher paclitaxel concentrations in intestinal tissues relative to intravenous injection. Compared to the Cremophor and nanoparticle formulations, the microparticles showed slower drug clearance from the peritoneal cavity, slower absorption into the systemic circulation, longer residence time, 10- to 45-times greater peritoneal targeting advantage and ∼2-times longer increase in survival time (p < 0.01 for all parameters).

Conclusions

Our results indicate the important roles of drug carrier in determining the peritoneal targeting advantage and antitumor activity of IP treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AUC:

area under curve

AUMC:

area under moment curve

HPLC:

high pressure liquid chromatography

IP:

intraperitoneal

MRT:

mean residence time

MST:

median survival time

PBS:

phosphate-buffered saline

PLG:

poly(D,L-lactide-co-glycolide)

SEM:

scanning electron microscope.

References

  1. M. Markman, E. Rowinsky, T. Hakes, B. Reichman, W. Jones, J. L. Lewis, Jr., S. Rubin, J. Curtin, R. Barakat, M. Phillips, and Phase I trial of intraperitoneal taxol: a Gynecoloic Oncology Group study. J. Clin. Oncol. 10(9):1485–1491 (1992).

    PubMed  CAS  Google Scholar 

  2. J. L. Speyer, J. M. Collins, R. L. Dedrick, M. F. Brennan, A. R. Buckpitt, H. Londer, V. T. DeVita, Jr., and C. E. Myers. Phase I and pharmacological studies of 5-fluorouracil administered intraperitoneally. Cancer Res. 40(3):567–572 (1980).

    PubMed  CAS  Google Scholar 

  3. S. Zimm, S. M. Cleary, W. E. Lucas, R. J. Weiss, M. Markman, P. A. Andrews, M. A. Schiefer, S. Kim, C. Horton, and S. B. Howell. Phase I/pharmacokinetic study of intraperitoneal cisplatin and etoposide. Cancer Res. 47(6):1712–1716 (1987).

    PubMed  CAS  Google Scholar 

  4. D. S. Alberts, P. Y. Liu, E. V. Hannigan, R. O’Toole, S. D. Williams, J. A. Young, E. W. Franklin, D. L. Clarke-Pearson, V. K. Malviya, and B. DuBeshter. Intraperitoneal cisplatin plus intravenous cyclophosphamide versus intravenous cisplatin plus intravenous cyclophosphamide for stage III ovarian cancer. N. Engl. J. Med. 335(26):1950–1955 (1996).

    Article  PubMed  CAS  Google Scholar 

  5. D. K. Armstrong, B. Bundy, L. Wenzel, H. Q. Huang, R. Baergen, S. Lele, L. J. Copeland, J. L. Walker, and R. A. Burger. Intraperitoneal cisplatin and paclitaxel in ovarian cancer. N. Engl. J. Med. 354(1):34–43 (2006).

    Article  PubMed  CAS  Google Scholar 

  6. A. Gadducci, F. Carnino, S. Chiara, I. Brunetti, L. Tanganelli, A. Romanini, M. Bruzzone, and P. F. Conte. Intraperitoneal versus intravenous cisplatin in combination with intravenous cyclophosphamide and epidoxorubicin in optimally cytoreduced advanced epithelial ovarian cancer: a randomized trial of the Gruppo Oncologico Nord-Ovest. Gynecol. Oncol. 76(2):157–162 (2000).

    Article  PubMed  CAS  Google Scholar 

  7. M. Markman, B. N. Bundy, D. S. Alberts, J. M. Fowler, D. L. Clark-Pearson, L. F. Carson, S. Wadler, and J. Sickel. Phase III trial of standard-dose intravenous cisplatin plus paclitaxel versus moderately high-dose carboplatin followed by intravenous paclitaxel and intraperitoneal cisplatin in small-volume stage III ovarian carcinoma: an intergroup study of the Gynecologic Oncology Group, Southwestern Oncology Group, and Eastern Cooperative Oncology Group. J. Clin. Oncol. 19(4):1001–1007 (2001).

    PubMed  CAS  Google Scholar 

  8. A. Polyzos, N. Tsavaris, C. Kosmas, L. Giannikos, M. Katsikas, N. Kalahanis, G. Karatzas, K. Christodoulou, K. Giannakopoulos, D. Stamatiadis, and N. Katsilambros. A comparative study of intraperitoneal carboplatin versus intravenous carboplatin with intravenous cyclophosphamide in both arms as initial chemotherapy for stage III ovarian cancer. Oncology 56(4):291–296 (1999).

    Article  PubMed  CAS  Google Scholar 

  9. J. L. Walker, D. K. Armstrong, H. Q. Huang, J. Fowler, K. Webster, R. A. Burger, and D. Clarke-Pearson. Intraperitoneal catheter outcomes in a phase III trial of intravenous versus intraperitoneal chemotherapy in optimal stage III ovarian and primary peritoneal cancer: a Gynecologic Oncology Group Study. Gynecol. Oncol. 100(1):27–32 (2006).

    Article  PubMed  Google Scholar 

  10. M. S. Yen, C. M. Juang, C. R. Lai, G. C. Chao, H. T. Ng, and C. C. Yuan. Intraperitoneal cisplatin-based chemotherapy vs. intravenous cisplatin-based chemotherapy for stage III optimally cytoreduced epithelial ovarian cancer. Int. J. Gynaecol. Obstet. 72(1):55–60 (2001).

    Article  PubMed  CAS  Google Scholar 

  11. E. de Bree, P. A. Theodoropoulos, H. Rosing, J. Michalakis, J. Romanos, J. H. Beijnen, and D. D. Tsiftsis. Treatment of ovarian cancer using intraperitoneal chemotherapy with taxanes: from laboratory bench to bedside. Cancer Treat. Rev. 32(6):471–482 (2006).

    Article  PubMed  CAS  Google Scholar 

  12. http://www.cancer.gov/newscenter/pressreleases/IPchemotherapyrelease.

  13. K. B. Goldberg. Phase III Trial shows benefit for old drug, device, for ovarian cancer; will practice change? Cancer Lett. 32(2):1–4 (2006).

    Google Scholar 

  14. V. K. Malviya, G. Deppe, G. Boike, and J. Young. Pharmacokinetics of intraperitoneal doxorubicin in combination with systemic cyclophosphamide and cis-platinum in the treatment of stage III ovarian cancer. Gynecol. Oncol. 36(2):185–188 (1990).

    Article  PubMed  CAS  Google Scholar 

  15. P. J. O’Dwyer, F. LaCreta, M. Hogan, N. Rosenblum, J. L. O’Dwyer, and R. L. Comis. Pharmacologic study of etoposide and cisplatin by the intraperitoneal route. J. Clin. Pharmacol. 31(3):253–258 (1991).

    PubMed  CAS  Google Scholar 

  16. H. Gelderblom, J. Verweij, D. M. van Zomeren, D. Buijs, L. Ouwens, K. Nooter, G. Stoter, and A. Sparreboom. Influence of Cremophor El on the bioavailability of intraperitoneal paclitaxel. Clin. Cancer Res. 8(4):1237–1241 (2002).

    PubMed  CAS  Google Scholar 

  17. K. Yokogawa, M. Jin, N. Furui, M. Yamazaki, H. Yoshihara, M. Nomura, H. Furukawa, J. Ishizaki, S. Fushida, K. Miwa, and K. Miyamoto. Disposition kinetics of taxanes after intraperitoneal administration in rats and influence of surfactant vehicles. J. Pharm. Pharmacol. 56(5):629–634 (2004).

    Article  PubMed  CAS  Google Scholar 

  18. I. Knemeyer, M. G. Wientjes, and J. L. Au. Cremophor reduces paclitaxel penetration into bladder wall during intravesical treatment. Cancer Chemother. Pharmacol. 44(3):241–248 (1999).

    Article  PubMed  CAS  Google Scholar 

  19. W. J. Gradishar, S. Tjulandin, N. Davidson, H. Shaw, N. Desai, P. Bhar, M. Hawkins, and J. O’Shaughnessy. Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J. Clin. Oncol. 23(31):7794–7803 (2005).

    Article  PubMed  CAS  Google Scholar 

  20. M. Harries, P. Ellis, and P. Harper. Nanoparticle albumin-bound paclitaxel for metastatic breast cancer. J. Clin. Oncol. 23(31):7768–7771 (2005).

    Article  PubMed  CAS  Google Scholar 

  21. A. Sparreboom, C. D. Scripture, V. Trieu, P. J. Williams, T. De, A. Yang, B. Beals, W. D. Figg, M. Hawkins, and N. Desai. Comparative preclinical and clinical pharmacokinetics of a cremophor-free, nanoparticle albumin-bound paclitaxel (ABI-007) and paclitaxel formulated in Cremophor (Taxol). Clin. Cancer Res. 11(11):4136–4143 (2005).

    Article  PubMed  CAS  Google Scholar 

  22. T. K. Yeh, Z. Lu, M. G. Wientjes, and J. L. Au. Formulating paclitaxel in nanoparticles alters its disposition. Pharm. Res. 22(6):867–874 (2005).

    Article  PubMed  CAS  Google Scholar 

  23. G. J. Fetterly and R. M. Straubinger. Pharmacokinetics of paclitaxel-containing liposomes in rats. AAPS PharmSci. 5(4):E32 (2003).

    Article  PubMed  Google Scholar 

  24. S. Natsugoe, K. Tokuda, M. Shimada, T. Kumanohoso, M. Baba, S. Takao, M. Tabata, K. Nakamura, H. Yoshizawa, and T. Aikou. Morphology of the designed biodegradable cisplatin microsphere. Anticancer Res. 19(6B):5163–5167 (1999).

    PubMed  CAS  Google Scholar 

  25. A. Hagiwara, T. Takahashi, K. Sawai, C. Sakakura, H. Tsujimoto, T. Imanishi, M. Ohgaki, J. Yamazaki, S. Muranishi, A. Yamamoto, and T. Fujita. Pharmacological effects of 5-fluorouracil microspheres on peritoneal carcinomatosis in animals. Br. J. Cancer 74(9):1392–1396 (1996).

    PubMed  CAS  Google Scholar 

  26. D. K. Armstrong, G. F. Fleming, M. Markman, and H. H. Bailey. A phase I trial of intraperitoneal sustained-release paclitaxel microspheres (Paclimer) in recurrent ovarian cancer: a Gynecologic Oncology Group study. Gynecol. Oncol. 103(2):391–396 (2006).

    Article  PubMed  CAS  Google Scholar 

  27. L. Gianni, C. M. Kearns, A. Giani, G. Capri, L. Vigano, A. Lacatelli, G. Bonadonna, and M. J. Egorin. Nonlinear pharmacokinetics and metabolism of paclitaxel and its pharmacokinetic/pharmacodynamic relationships in humans. J. Clin. Oncol. 13(1):180–190 (1995).

    PubMed  CAS  Google Scholar 

  28. C. M. Kearns. Pharmacokinetics of the taxanes. Pharmacotherapy 17(5 Pt 2):105S–109S (1997).

    PubMed  CAS  Google Scholar 

  29. Z. Lu, T. K. Yeh, M. Tsai, J. L. Au, and M. G. Wientjes. Paclitaxel-loaded gelatin nanoparticles for intravesical bladder cancer therapy. Clin. Cancer Res. 10(22):7677–7684 (2004).

    Article  PubMed  CAS  Google Scholar 

  30. S. Ullberg and B. Larsson. Whole-body autoradiography. Methods Enzymol. 77:64–80 (1981).

    Article  PubMed  CAS  Google Scholar 

  31. D. Song and J. L. Au. Isocratic high-performance liquid chromatographic assay of taxol in biological fluids and tissues using automated column switching. J. Chromatogr. B Biomed. Appl. 663(2):337–344 (1995).

    Article  PubMed  CAS  Google Scholar 

  32. D. Chen, D. Song, M. G. Wientjes, and J. L. Au. Effect of dimethyl sulfoxide on bladder tissue penetration of intravesical paclitaxel. Clin. Cancer Res. 9(1):363–369 (2003).

    PubMed  CAS  Google Scholar 

  33. M. A. Baron. Structure of the intestinal peritoneum in man. Am. J. Anat. 69(3):439–497 (1941).

    Article  Google Scholar 

  34. M. F. Flessner, J. D. Fenstermacher, R. G. Blasberg, and R. L. Dedrick. Peritoneal absorption of macromolecules studied by quantitative autoradiography. Am. J. Physiol. 248(1 Pt 2):H26–H32 (1985).

    PubMed  CAS  Google Scholar 

  35. W. J. Shih, J. J. Coupal, and H. L. Chia. Communication between peritoneal cavity and mediastinal lymph nodes demonstrated by Tc-99m albumin nanocolloid intraperitoneal injection. Proc. Natl. Sci. Counc. Repub. China B 17(3):103–105 (1993).

    PubMed  CAS  Google Scholar 

  36. K. Hirano and C. A. Hunt. Lymphatic transport of liposome-encapsulated agents: effects of liposome size following intraperitoneal administration. J. Pharm. Sci. 74(9):915–921 (1985).

    Article  PubMed  CAS  Google Scholar 

  37. B. Monsarrat, P. Alvinerie, M. Wright, J. Dubois, F. Gueritte-Voegelein, D. Guenard, R. C. Donehower, and E. K. Rowinsky. Hepatic metabolism and biliary excretion of Taxol in rats and humans. J. Natl. Cancer Inst. Monogr. 15:39–46 (1993).

    PubMed  Google Scholar 

  38. K. Nishida, A. Kuma, S. Fumoto, M. Nakashima, H. Sasaki, and J. Nakamura. Absorption characteristics of model compounds from the small intestinal serosal surface and a comparison with other organ surfaces. J. Pharm. Pharmacol. 57(8):1073–1077 (2005).

    Article  PubMed  CAS  Google Scholar 

  39. K. Waxman, M. H. Soliman, and K. H. Nguyen. Absorption of insulin in the peritoneal cavity in a diabetic animal model. Artif. Organs 17(11):925–928 (1993).

    Article  PubMed  CAS  Google Scholar 

  40. A. Sharma, U. S. Sharma, and R. M. Straubinger. Paclitaxel-liposomes for intracavitary therapy of intraperitoneal P388 leukemia. Cancer Lett. 107(2):265–272 (1996).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a research grant R37CA49816 and R43CA103133 from the National Cancer Institute, NIH, DHHS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessie L.-S. Au.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsai, M., Lu, Z., Wang, J. et al. Effects of Carrier on Disposition and Antitumor Activity of Intraperitoneal Paclitaxel. Pharm Res 24, 1691–1701 (2007). https://doi.org/10.1007/s11095-007-9298-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9298-0

Key words

Navigation