Skip to main content

Advertisement

Log in

Role of P-glycoprotein in Limiting the Brain Penetration of Glabridin, An Active Isoflavan from the Root of Glycyrrhiza glabra

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Glabridin is a major active constituent of Glycyrrhiza glabra which is commonly used in the treatment of cardiovascular and central nervous system (CNS) diseases. Recently, we have found that glabridin is a substrate of P-glycoprotein (PgP/MDR1). This study aimed to investigate the role of PgP in glabridin penetration across the blood–brain barrier (BBB) using several in vitro and in vivo models.

Materials and Methods

Cultured primary rat brain microvascular endothelial cells (RBMVECs) were used in the uptake, efflux and transcellular transport studies. A rat bilateral in situ brain perfusion model was used to investigate the brain distribution of glabridin. The brain and tissue distribution of glabridin in rats with or without coadministered verapamil or quinidine were examined with correction for the tissue residual blood. In addition, the brain distribution of glabridin in mdr1a(−/−) mice was compared with the wild-type mice. Glabridin in various biological matrices was determined by a validated liquid chromatography mass spectrometric method.

Results

The uptake and efflux of glabridin in cultured RBMVECs were ATP-dependent and significantly altered in the presence of a PgP or multi-drug resistance protein (Mrp1/2) inhibitor (e.g. verapamil or MK-571). A polarized transport of glabridin was found in RBMVEC monolayers with facilitated efflux from the abluminal (BL) to luminal (AP) side. Addition of a PgP or Mrp1/2 inhibitor in both luminal and abluminal sides attenuated the polarized transport across RBMVECs. In a bilateral in situ brain perfusion model, the uptake of glabridin into the cerebrum increased from 0.42 ± 0.09% at 1 min to 9.27 ± 1.69% (ml/100 g tissue) at 30 min and was significantly greater than that for sucrose. Co-perfusion of a PgP or Mrp1/2 inhibitor significantly increased the brain distribution of glabridin by 33.6−142.9%. The rat brain levels of glabridin were only about 27% of plasma levels when corrected by tissue residual blood and it was increased to up to 44% when verapamil or quinidine was coadministered. The area under the brain concentration-time curve (AUC) of glabridin in mdr1a(−/−) mice was 6.0-fold higher than the wild-type mice.

Conclusions

These findings indicate that PgP limits the brain penetration of glabridin through the BBB and PgP may cause drug resistance to glabridin (licorice) therapy for CNS diseases and potential drug-glabridin interactions. However, further studies are needed to explore the role of other drug transporters (e.g. Mrp1-4) in restricting the brain penetration of glabridin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

ABC:

ATP-binding cassette

AP:

Luminal

AUC:

the area under the plasma concentration-time curve

BBB:

blood-brain barrier

BL:

abluminal

Cmax :

maximum plasma concentration

CNS:

central nervous system

CSF:

cerebrospinal fluid

DMSO:

dimethyl sulfoxide

EDTA:

ethylenediaminetetraacetic acid

HBSS:

Hank’s balanced salt solution

HEPES:

N-[2-hydroxyethyl] piperazine-N9-[4-butanesulfonic acid]

HPLC:

high performance liquid chromatography

K in :

in vivo BBB permeability

K m :

Michaelis-Menten constant

LC-MS:

liquid chromatography mass spectrometry

MRP (Mrp for rat):

multi-drug resistance protein

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazonium bromide

P app :

permeability coefficient

PD :

passive diffusion component

PgP:

P-glycoprotein

R brain :

the amount of a drug in the brain over that in the perfusate

RBMVEC:

rat brain microvascular endothelial cells

SDS:

sodium dodecyl sulphate

\( t_{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2\beta }} \) :

elimination half life

Tmax :

time to achieve Cmax

TEER:

transepithelial electric resistance

(V F)B :

volume fraction of residual blood in a tissue

Vmax :

maximum velocity

References

  1. W. A. Banks. Physiology and pathology of the blood-brain barrier: implications for microbial pathogenesis, drug delivery and neurodegenerative disorders. J. Neurovirol. 5:538–555 (1999).

    PubMed  CAS  Google Scholar 

  2. W. Loscher and H. Potschka. Blood-brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx 2:86–98 (2005).

    Article  Google Scholar 

  3. P. L. Golden and G. M. Pollack. Blood-brain barrier efflux transport. J. Pharm. Sci. 92:1739–1753 (2003).

    Article  PubMed  CAS  Google Scholar 

  4. P. Borstand and R. O. Elferink. Mammalian ABC transporters in health and disease. Annu. Rev. Biochem. 71:537–592 (2002).

    Article  CAS  Google Scholar 

  5. H. Sun, H. Dai, N. Shaik, and W. F. Elmquist. Drug efflux transporters in the CNS. Adv. Drug Deliv. Rev. 55:83–105 (2003).

    Article  PubMed  CAS  Google Scholar 

  6. A. G. de Boer, I. C. van der Sandt, and P. J. Gaillard. The role of drug transporters at the blood-brain barrier. Annu. Rev. Pharmacol. Toxicol. 43:629–656 (2003).

    Article  PubMed  CAS  Google Scholar 

  7. T. Terasaki and S. Ohtsuki. Brain-to-blood transporters for endogenous substrates and xenobiotics at the blood-brain barrier: an overview of biology and methodology. NeuroRx 2:63–72 (2005).

    Article  PubMed  Google Scholar 

  8. D. J. Begley. ABC transporters and the blood-brain barrier. Curr. Pharm. Des. 10:1295–1312 (2004).

    Article  PubMed  CAS  Google Scholar 

  9. M. Demeule, A. Regina, J. Jodoin, A. Laplante, C. Dagenais, F. Berthelet, A. Moghrabi, and R. Beliveau. Drug transport to the brain: key roles for the efflux pump P-glycoprotein in the blood-brain barrier. Vascul. Pharmacol. 38:339–348 (2002).

    Article  PubMed  CAS  Google Scholar 

  10. E. M. Taylor. The impact of efflux transporters in the brain on the development of drugs for CNS disorders. Clin. Pharmacokinet. 41:81–92 (2002).

    Article  PubMed  CAS  Google Scholar 

  11. Y.-P. Zhu. Chinese materia medica: chemistry, pharmacology and applications, Harwood Academic Publishers, Amsterdam, The Netherlands, 1998.

    Google Scholar 

  12. R. K. Dhiman and Y. K. Chawla. Herbal medicines for liver diseases. Dig. Dis. Sci. 50:1807–1812 (2005).

    Article  PubMed  CAS  Google Scholar 

  13. C. Fiore, M. Eisenhut, E. Ragazzi, G. Zanchin, and D. Armanini. A history of the therapeutic use of liquorice in Europe. J. Ethnopharmacol. 99:317–324 (2005).

    Article  PubMed  Google Scholar 

  14. L. Bielory. Complementary and alternative interventions in asthma, allergy, and immunology. Ann. Allergy Asthma Immunol. 93:S45–S54 (2004).

    Article  PubMed  Google Scholar 

  15. W. J. Craig. Health-promoting properties of common herbs. Am. J. Clin. Nutr. 70:491S–499S (1999).

    PubMed  CAS  Google Scholar 

  16. P. A. Belinky, M. Aviram, B. Fuhrman, M. Rosenblat, and J. Vaya. The antioxidative effects of the isoflavan glabridin on endogenous constituents of LDL during its oxidation. Atherosclerosis 137:49–61 (1998).

    Article  PubMed  CAS  Google Scholar 

  17. T. Yokota, H. Nishio, Y. Kubota, and M. Mizoguchi. The inhibitory effect of glabridin from licorice extracts on melanogenesis and inflammation. Pigment Cell Res. 11:355–361 (1998).

    Article  PubMed  CAS  Google Scholar 

  18. M. Rosenblat, P. Belinky, J. Vaya, R. Levy, T. Hayek, R. Coleman, S. Merchav, and M. Aviram. Macrophage enrichment with the isoflavan glabridin inhibits NADPH oxidase-induced cell-mediated oxidation of low density lipoprotein. A possible role for protein kinase C. J. Biol. Chem. 274:13790–13799 (1999).

    Article  PubMed  CAS  Google Scholar 

  19. S. Tamir, M. Eizenberg, D. Somjen, N. Stern, R. Shelach, A. Kaye, and J. Vaya. Estrogenic and antiproliferative properties of glabridin from licorice in human breast cancer cells. Cancer Res. 60:5704–5709 (2000).

    PubMed  CAS  Google Scholar 

  20. F. Aoki, S. Honda, H. Kishida, M. Kitano, N. Arai, H. Tanaka, S. Yokota, K. Nakagawa, T. Asakura, Y. Nakai, and T. Mae. Suppression by licorice flavonoids of abdominal fat accumulation and body weight gain in high-fat diet-induced obese C57BL/6J mice. Biosci. Biotechnol. Biochem. 71:206–214 (2007).

    Article  PubMed  CAS  Google Scholar 

  21. J. S. Kang, Y. D. Yoon, M. H. Han, S. B. Han, K. Lee, K. H. Lee, S. K. Park, and H. M. Kim. Glabridin suppresses intercellular adhesion molecule-1 expression in tumor necrosis factor-alpha-stimulated human umbilical vein endothelial cells by blocking sphingosine kinase pathway: implications of Akt, extracellular signal-regulated kinase, and nuclear factor-kappaB/Rel signaling pathways. Mol. Pharmacol. 69:941–949 (2006).

    PubMed  CAS  Google Scholar 

  22. R. K. Dhiman. Herbal hepatoprotective agents: marketing gimmick or potential therapies? Trop. Gastroenterol. 24:160–162 (2003).

    PubMed  Google Scholar 

  23. Z. Y. Wang and D. W. Nixon. Licorice and cancer. Nutr. Cancer 39:1–11 (2001).

    Article  PubMed  CAS  Google Scholar 

  24. C. E. Piersen. Phytoestrogens in botanical dietary supplements: implications for cancer. Integr. Cancer Ther. 2:120–138 (2003).

    Article  PubMed  CAS  Google Scholar 

  25. D. Armanini, C. Fiore, M. J. Mattarello, J. Bielenberg, and M. Palermo. History of the endocrine effects of licorice. Exp. Clin. Endocrinol. Diabetes 110:257–261 (2002).

    Article  PubMed  CAS  Google Scholar 

  26. L. Langmead and D. S. Rampton. Review article: herbal treatment in gastrointestinal and liver disease-benefits and dangers. Aliment. Pharmacol. Ther. 15:1239–1252 (2001).

    Article  PubMed  CAS  Google Scholar 

  27. A. Olukoga and D. Donaldson. Liquorice and its health implications. J. R. Soc. Health 120:83–89 (2000).

    PubMed  CAS  Google Scholar 

  28. J. Cao, X. Chen, J. Liang, X. Q. Yu, A. L. Xu, E. Chan, W. Duan, M. Huang, J. Y. Wen, X. Y. Yu, X. T. Li, F. S. Sheu, and S. F. Zhou. Role of P-glycoprotein in the intestinal absorption of glabridin, an active flavonoid from the root of Glycyrrhiza glabra. Drug. Metab. Dispos. 35:539–553 (2007).

    Article  PubMed  CAS  Google Scholar 

  29. F. Roux and P. O. Couraud. Rat brain endothelial cell lines for the study of blood-brain barrier permeability and transport functions. Cell. Mol. Neurobiol. 25:41–58 (2005).

    Article  PubMed  Google Scholar 

  30. T. Mosmann. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65:55–63 (1983).

    Article  PubMed  CAS  Google Scholar 

  31. S. Zhou, X. Feng, P. Kestell, J. W. Paxton, B. C. Baguley, and E. Chan. Transport of the investigational anti-cancer drug 5,6-dimethylxanthenone-4-acetic acid and its acyl glucuronide by human intestinal Caco-2 cells. Eur. J. Pharm. Sci. 24:513–524 (2005).

    Article  PubMed  CAS  Google Scholar 

  32. B. El Hafny, N. Cano, M. Piciotti, A. Regina, J. M. Scherrmann, and F. Roux. Role of P-glycoprotein in colchicine and vinblastine cellular kinetics in an immortalized rat brain microvessel endothelial cell line. Biochem. Pharmacol. 53:1735–1742 (1997).

    Article  PubMed  Google Scholar 

  33. Q. Tian, J. Zhang, E. Chan, W. Duan, and S. F. Zhou. Multidrug resistance proteins (MRPs) and implication in drug development. Drug Dev. Res. 51:1–18 (2005).

    Article  CAS  Google Scholar 

  34. J. Zhang, M. Huang, S. Guan, H. C. Bi, Y. Pan, W. Duan, S. Y. Chan, X. Chen, Y. H. Hong, J. S. Bian, H. Y. Yang, and S. Zhou. A mechanistic study of the intestinal absorption of cryptotanshinone, the major active constituent of Salvia miltiorrhiza. J. Pharmacol. Exp. Ther. 317:1285–1294 (2006).

    Article  PubMed  CAS  Google Scholar 

  35. Y. Takasato, S. I. Rapoport, and Q. R. Smith. An in situ brain perfusion technique to study cerebrovascular transport in the rat. Am. J. Physiol. 247:H484–H493 (1984).

    PubMed  CAS  Google Scholar 

  36. I. Tamai, M. Senmaru, T. Terasaki, and A. Tsuji. Na(+)- and Cl(−)-dependent transport of taurine at the blood-brain barrier. Biochem. Pharmacol. 50:1783–1793 (1995).

    Article  PubMed  CAS  Google Scholar 

  37. S. P. Khor and M. Mayersohn. Potential error in the measurement of tissue to blood distribution coefficients in physiological pharmacokinetic modeling. Residual tissue blood. I. Theoretical considerations. Drug Metab. Dispos. 19:478–485 (1991).

    PubMed  CAS  Google Scholar 

  38. V. C. de Boer, A. A. Dihal, H. van der Woude, I. C. Arts, S. Wolffram, G. M. Alink, I. M. Rietjens, J. Keijer, and P. C. Hollman. Tissue distribution of quercetin in rats and pigs. J. Nutr. 135:1718–1725 (2005).

    PubMed  Google Scholar 

  39. U. K. Laemmli. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 (1970).

    Article  PubMed  CAS  Google Scholar 

  40. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275 (1951).

    PubMed  CAS  Google Scholar 

  41. K. Yamaoka, T. Nakagawa, and T. Uno. Application of Akaike's information criterion (AIC) in the evaluation of linear pharmacokinetic equations. J. Pharmacokinet. Biopharm. 6:165–167 (1978).

    Article  PubMed  CAS  Google Scholar 

  42. S. Zhou, L. Y. Lim, and B. Chowbay. Herbal modulation of P-glycoprotein. Drug Metab. Rev. 36:57–104 (2004).

    Article  PubMed  CAS  Google Scholar 

  43. T. Miyama, H. Takanaga, H. Matsuo, K. Yamano, K. Yamamoto, T. Iga, M. Naito, T. Tsuruo, H. Ishizuka, Y. Kawahara, and Y. Sawada. P-glycoprotein-mediated transport of itraconazole across the blood-brain barrier. Antimicrob. Agents Chemother. 42:1738–1744 (1998).

    PubMed  CAS  Google Scholar 

  44. S. V. Ambudkar, C. O. Cardarelli, I. Pashinsky, and W. D. Stein. Relation between the turnover number for vinblastine transport and for vinblastine-stimulated ATP hydrolysis by human P-glycoprotein. J. Biol. Chem. 272:21160–21166 (1997).

    Article  PubMed  CAS  Google Scholar 

  45. C. J. Ek, M. D. Habgood, K. M. Dziegielewska, A. Potter, and N. R. Saunders. Permeability and route of entry for lipid-insoluble molecules across brain barriers in developing Monodelphis domestica. J. Physiol. 536:841–853 (2001).

    Article  PubMed  CAS  Google Scholar 

  46. S. Ohtsuki, S. Sato, H. Yamaguchi, M. Kamoi, T. Asashima, and T. Terasaki. Exogenous expression of claudin-5 induces barrier properties in cultured rat brain capillary endothelial cells. J. Cell. Physiol. 210:81–86 (2007).

    Article  PubMed  CAS  Google Scholar 

  47. A. H. Schinkel, J. J. Smit, O. van Tellingen, J. H. Beijnen, E. Wagenaar, L. van Deemter, C. A. Mol, M. A. van der Valk, E. C. Robanus-Maandag, H. P. te Riele, et al. Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 77:491–502 (1994).

    Article  PubMed  CAS  Google Scholar 

  48. J. van Asperen, O. van Tellingen, F. Tijssen, A. H. Schinkel, and J. H. Beijnen. Increased accumulation of doxorubicin and doxorubicinol in cardiac tissue of mice lacking mdr1a P-glycoprotein. Br. J. Cancer 79:108–113 (1999).

    Article  PubMed  Google Scholar 

  49. N. Drion, M. Lemaire, J. M. Lefauconnier, and J. M. Scherrmann. Role of P-glycoprotein in the blood-brain transport of colchicine and vinblastine. J. Neurochem. 67:1688–1693 (1996).

    Article  PubMed  CAS  Google Scholar 

  50. M. Lemaire, A. Bruelisauer, P. Guntz, and H. Sato. Dose-dependent brain penetration of SDZ PSC 833, a novel multidrug resistance-reversing cyclosporin, in rats. Cancer Chemother. Pharmacol. 38:481–486 (1996).

    Article  PubMed  CAS  Google Scholar 

  51. M. Arboix, O. G. Paz, T. Colombo, and M. D’Incalci. Multidrug resistance-reversing agents increase vinblastine distribution in normal tissues expressing the P-glycoprotein but do not enhance drug penetration in brain and testis. J. Pharmacol. Exp. Ther. 281:1226–1230 (1997).

    PubMed  CAS  Google Scholar 

  52. S. Song, H. Suzuki, R. Kawai, and Y. Sugiyama. Effect of PSC 833, a P-glycoprotein modulator, on the disposition of vincristine and digoxin in rats. Drug Metab. Dispos. 27:689–694 (1999).

    PubMed  CAS  Google Scholar 

  53. A. H. Schinkel, U. Mayer, E. Wagenaar, C. A. Mol, L. van Deemter, J. J. Smit, M. A. van der Valk, A. C. Voordouw, H. Spits, O. van Tellingen, J. M. Zijlmans, W. E. Fibbe, and P. Borst. Normal viability and altered pharmacokinetics in mice lacking mdr1-type (drug-transporting) P-glycoproteins. Proc. Natl. Acad. Sci. U. S. A. 94:4028–4033 (1997).

    Article  PubMed  CAS  Google Scholar 

  54. S. Baltes, A. M. Gastens, M. Fedrowitz, H. Potschka, V. Kaever, and W. Loscher. Differences in the transport of the antiepileptic drugs phenytoin, levetiracetam and carbamazepine by human and mouse P-glycoprotein. Neuropharmacology 52:333–346 (2007).

    Article  PubMed  CAS  Google Scholar 

  55. M. Katoh, N. Suzuyama, T. Takeuchi, S. Yoshitomi, S. Asahi, and T. Yokoi. Kinetic analyses for species differences in P-glycoprotein-mediated drug transport. J. Pharm. Sci. 95:2673–2683 (2006).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the support provided by Guangdong Provincial Cardiovascular Institute (Guangzhou, China), National 973 Grand Project of China (Grant No. 2005CB523305), the Australian Institute of Chinese Medicine, Sydney, Australia (Grant Nos. R-106-00341 & R-106-00382), Singapore Cancer Syndicate Grant SCS PS0023, and the Queensland University of Technology Academic Staff Research Fund (Brisbane, Queensland, Australia).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shu-Guang Lin or Shu-Feng Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, XY., Lin, SG., Zhou, ZW. et al. Role of P-glycoprotein in Limiting the Brain Penetration of Glabridin, An Active Isoflavan from the Root of Glycyrrhiza glabra . Pharm Res 24, 1668–1690 (2007). https://doi.org/10.1007/s11095-007-9297-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9297-1

Key words

Navigation