Skip to main content
Log in

Insulin Self-association: Effects on Lung Disposition Kinetics in the Airways of the Isolated Perfused Rat Lung (IPRL)

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To characterize the kinetic dependence of pulmonary absorption and metabolism of insulin and lispro on the magnitude of their hexameric association.

Methods

Hexamer content by weight percent (%Hex) in various insulin-zinc and lispro-zinc solutions were determined by quantitative centrifugal ultrafiltration and zinc titration with terpyridine (QCUF-ZTT). Each of the solutions (0.1 ml) was then administered into the airways of the IPRL of normal and experimental diabetic animals. Rate constants were determined for lung absorption (k a) and non-absorptive loss (k nal; comprising mucociliary clearance and metabolism).

Results

%Hex in administered solutions ranged from 3.3 to 94.4%. Data analysis showed excellent correlations between the values for k a or k nal and %Hex, irrespective of insulin type, concentration, solution pH or ionic strength. The values for k a decreased (0.22 → 0.05 h−1) with increasing %Hex, as did values for k nal. At %Hex in administered solutions ≥50%, values for k nal approached estimates for the rate constant for mucociliary clearance, implying that lung metabolism occurred primarily with monomeric insulin. There were no differences in insulin disposition kinetics between lungs taken from experimental diabetic and sham-control animals.

Conclusions

The kinetics of pulmonary insulin disposition depended on the magnitude of molecular self-association. Dissociated forms of insulin (dimers or monomers) in the dosing solution showed higher rates than hexamers for both lung absorption and metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BSA:

bovine serum albumin

CBS:

citrate-buffered saline

CD:

circular dichroism

COD:

coefficient of determination

ELISA:

enzyme-linked immunosorbent assay

%Hex:

percent of hexamers by weight

IPRL:

isolated perfused rat lung

IU:

International Unit

LLF:

lung lining fluid

MSC:

model selection criterion

NIH:

National Institute of Health

PBS:

phosphate-buffered saline

QCUF–ZTT:

quantitative centrifugal ultrafiltration and zinc titration with terpyridine

%RSD:

percent of relative standard deviation

SD:

standard deviation

SE:

standard error

STZ:

streptozotocin

t 1/2 :

apparent half-life

USP:

United States Pharmacopeia

UV:

ultraviolet

VCU:

Virginia Commonwealth University

μ :

ionic strength

[θ]:

mean residue molar ellipticity

References

  1. J. Brange. Galenics of insulin, Springer, Berlin, 1987.

    Google Scholar 

  2. M. R. DeFelippis, R. E. Chance, and B. H. Frank. Insulin self-association and the relationship to pharmacokinetics and pharmacodynamics. Crit. Rev. Ther. Drug Carr. Syst. 18:201–264 (2001).

    CAS  Google Scholar 

  3. S. Kang, J. Brange, A. Burch, A. Volund, and D. R. Owens. Subcutaneous insulin absorption explained by insulin’s physicochemical properties. Diabetes Care 14:942–948 (1991).

    Article  PubMed  CAS  Google Scholar 

  4. D. T. Birnbaum, M. A. Kilcomons, M. R. DeFelippis, and J. M. Beals. Assembly and dissociation of human insulin and LysB28ProB29-insulin hexamers: a comparison study. Pharm. Res. 14:25–36 (1997).

    Article  PubMed  CAS  Google Scholar 

  5. Z. Vajo and W. C. Duckworth. Genetically engineered insulin analogs: diabetes in the new millennium. Pharmacol. Rev. 52:1–9 (2000).

    PubMed  CAS  Google Scholar 

  6. S. J. Farr and G. Taylor. Insulin inhalation: its potential as a nonparenteral method of administration. In A. L. Adjei and P. K. Gupta (eds.), Inhalation Delivery of Therapeutic Peptides and Proteins, Marcel Dekker, New York, 1997, pp. 371–387.

    Google Scholar 

  7. J. S. Patton, J. G. Bukar, and M. A. Eldon. Clinical pharmacokinetics and pharmacodynamics of inhaled insulin. Clin. Pharmacokinet. 43:781–801 (2004).

    Article  PubMed  CAS  Google Scholar 

  8. K. Rave, S. Bott, L. Heinemann, S. Sha, R. H. Becker, S. A. Willavize, and T. Heise. Time-action profile of inhaled insulin in comparison with subcutaneously injected insulin lispro and regular human insulin. Diabetes Care 28:1077–1082 (2005).

    Article  PubMed  CAS  Google Scholar 

  9. I. Gonda, R. M. Rubsamen, and S. J. Farr. Method of use of monomeric insulin as a means for improving the reproducibility of inhaled insulin. United States Patent, US 6250298 (Jun 26, 2001).

  10. Y. Pang, M. Sakagami, and P. R. Byron. The pharmacokinetics of pulmonary insulin in the in vitro isolated perfused rat lung: implications of metabolism and regional deposition. Eur. J. Pharm. Sci. 25:369–378 (2005).

    Article  PubMed  CAS  Google Scholar 

  11. R. A. Roth. Flow dependence of norepinephrine extraction by isolated perfused rat lungs. Am. J. Physiol. 242:H844–H848 (1982).

    PubMed  CAS  Google Scholar 

  12. B. Rodrigues, P. Poucheret, M. L. Battell, and J. H. McNeill. Streptozotocin-induced diabetes: induction, mechanism(s), and dose dependency. In J. H. McNeill (ed.), Experimental Models of Diabetes, CRC Press, Florida, 2000, pp. 3–17.

    Google Scholar 

  13. S. Rahuel-Clermont, C. A. French, N. C. Kaarsholm, M. F. Dunn, and C. I. Chou. Mechanisms of stabilization of the insulin hexamer through allosteric ligand interactions. Biochemistry 36:5837–5845 (1997).

    Article  PubMed  CAS  Google Scholar 

  14. R. H. Holyer, C. D. Hubbard, S. F. A. Kettle, and R. G. Wilkins. The kinetics of replacement reactions of complexes of the transition metals with 2,2′,2″-terpyridine. Inorg. Chem. 5:622–625 (1966).

    Article  CAS  Google Scholar 

  15. V. Chandrashekar, R. W. Steger, A. Bartke, C. T. Fadden, and S. G. Kienast. Influence of diabetes on the gonadotropin response to the negative feedback effect of testosterone and hypothalamic neurotransmitter turnover in adult male rats. Neuroendocrinology 54:30–35 (1991).

    PubMed  CAS  Google Scholar 

  16. P. R. Byron and R. W. Niven. A novel method for drug administration to the airways of the isolated perfused rat lung. J. Pharm. Sci. 77:693–695 (1988).

    Article  PubMed  CAS  Google Scholar 

  17. J. Z. Sun, P. R. Byron, and F. Rypacek. Solute absorption from the airways of the isolated rat lung. V. Charge effects on the absorption of copolymers of N(2-hydroxyethyl)-DL-aspartamide with DL-aspartic acid or dimethylaminopropyl-DL-aspartamide. Pharm. Res. 16:1104–1108 (1999).

    Article  PubMed  CAS  Google Scholar 

  18. M. Sakagami, P. R. Byron, J. Venitz, and F. Rypacek. Solute disposition in the rat lung in vivo and in vitro: determining regional absorption kinetics in the presence of mucociliary escalator. J. Pharm. Sci. 91:594–694 (2001).

    Article  Google Scholar 

  19. D. N. Brems, L. A. Alter, M. J. Beckage,R. E. Chance, R. D. DiMarchi, L. K. Green, H. B. Long, A. H. Pekar, J. E. Shields, and B. H. Frank. Altering the association properties of insulin by amino acid replacement. Protein Eng. 5:527–533 (1992).

    Article  PubMed  CAS  Google Scholar 

  20. G. D. Fasman. Circular dichroism and the conformational analysis of biomolecules, Plenum, New York, 1996.

    Google Scholar 

  21. Y. Pocker and S. B. Biswas. Conformational dynamics of insulin in solution. Circular dichroic studies. Biochemistry 19:5043–5049 (1980).

    Article  PubMed  CAS  Google Scholar 

  22. K. Hinds, J. J. Koh, L. Jones, F. Liu, M. Baudys, and S. W. Kim. Synthesis and characterization of poly(ethylene glycol)-insulin conjugates. Bioconjug. Chem. 11:195–201 (2000).

    Article  PubMed  CAS  Google Scholar 

  23. S. G. Melberg and W. C. Johnson. Changes in secondary structure follow the dissociation of human insulin hexamers: a circular dichroism study. Proteins 8:280–286 (1990).

    Article  PubMed  CAS  Google Scholar 

  24. K. Okumura, S. Iwakawa, T. Yoshida, T. Seki, and F. Komada. Intratracheal delivery of insulin: absorption from solution and aerosol by rat lung. Int. J. Pharm. 88:63–73 (1992).

    Article  CAS  Google Scholar 

  25. F. Liu, D. O. Kildsig, and A. K. Mitra. Insulin aggregation in aqueous media and its effect on alpha-chymotrypsin-mediated proteolytic degradation. Pharm. Res. 8:925–929 (1991).

    Article  PubMed  CAS  Google Scholar 

  26. F. Y. Liu, Z. Shao, D. O. Kildsig, and A. K. Mitra. Pulmonary delivery of free and liposomal insulin. Pharm. Res. 10:228–232 (1993).

    Article  PubMed  CAS  Google Scholar 

  27. A. Hussain and F. Ahsan. State of insulin self-association does not affect its absorption from the pulmonary route. Eur. J. Pharm. Sci. 25:289–298 (2005).

    PubMed  CAS  Google Scholar 

  28. S. Suarez, L. Garcia-Contreras, D. Sarubbi, E. Flanders, D. O’Toole, J. Smart, and A. J. Hickey. Facilitation of pulmonary insulin absorption by H-MAP: pharmacokinetics and pharmacodynamics in rats. Pharm. Res. 18:1677–1684 (2001).

    Article  PubMed  CAS  Google Scholar 

  29. D. Popov and M. Simionescu. Alterations of lung structure in experimental diabetes, and diabetes associated with hyperlipidaemia in hamsters. Eur. Respir. J. 10:1850–1858 (1997).

    Article  PubMed  CAS  Google Scholar 

  30. M. Pascariu, M. Bendayan, and L. Ghitescu. Correlated endothelial caveolin overexpression and increased tanscytosis in experimental diabetes. J. Histochem. Cytochem. 52:65–76 (2004).

    PubMed  CAS  Google Scholar 

  31. K. Sugahara, K. Iyama, K. Sano, and T. Morioka. Overexpression of pulmonary surfactant apoprotein A mRNA in alveolar type II cells and nonciliated bronchiolar (Clara) epithelial cells in streptozotocin-induced diabetic rats demonstrated by in situ hybridization. Am. J. Respir. Cell Mol. Biol. 6:307–314 (1992).

    PubMed  CAS  Google Scholar 

  32. A. Erman, B. Chen-Gal, I. David, S. Giler, G. Boner, and D. J. van Dijk. Insulin treatment reduces the increased serum and lung angiotensin converting enzyme activity in streptozotocin-induced diabetic rats. Scand. J. Clin. Lab. Invest. 58:81–87 (1998).

    Article  PubMed  CAS  Google Scholar 

  33. M. Sakagami and P. R. Byron. Osmotic effects on solute absorption from the airways: implication for solute-uncoupled alveolar fluid transport. AAPSPharmSci 3 (2001) http://www.aapspharmaceutica.com/search/abstract_view.asp?id=535&ct=01Abstracts.

  34. M. Sakagami. Insulin disposition in the lung following oral inhalation in humans: a meta-analysis of its pharmacokinetics. Clin. Pharmacokinet. 43:539–552 (2004).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Eli Lilly and Company for their gift of lispro-zinc (Lispro-Zn), and to Verne G. Schirch, Ph.D. (Department of Biochemistry, VCU) for the use and assistance with CD spectrometry. The Medical College of Virginia Foundation and VCU’s A.D. Williams Research Funds (MS) supported this research. YP acknowledges VCU School of Pharmacy financial support during her graduate study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Sakagami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pang, Y., Sakagami, M. & Byron, P.R. Insulin Self-association: Effects on Lung Disposition Kinetics in the Airways of the Isolated Perfused Rat Lung (IPRL). Pharm Res 24, 1636–1644 (2007). https://doi.org/10.1007/s11095-007-9292-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9292-6

Key words

Navigation