Skip to main content
Log in

Confocal Microscopy for the Elucidation of Mass Transport Mechanisms Involved in Protein Release from Lipid-based Matrices

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Purpose

It was the aim of this study to identify the governing mechanisms during protein release from cylindrical lipid matrices by visualizing mass transport and correlating the data with in vitro dissolution testing.

Materials and Methods

Glyceryl trimyristate cylinders of 2 mm diameter, 2.2 mm height and 7 mg weight were manufactured by compression of a protein–lipid powder mixture prepared by a polyethylene glycol (PEG) co-lyophilization technique. BSA was fluorescence-labeled and the distribution visualized and quantified at different stages of the release process by confocal microscopy in parallel to the quantification in the release buffer. The impact of matrix loading and protein molecular weight was assessed with the model proteins lysozyme, BSA, alcohol dehydrogenase and thyroglobulin.

Results

Buffer penetration and protein release occurred simultaneously from the outer regions of the cylinder progressing towards the center. Release from the top and bottom of the matrix was not negligible but much slower than penetration from the side, probably due to an oriented arrangement of lipid flakes during compression. The different quantification strategies were found to yield identical results. At 6% protein loading, buffer penetration was complete after 4 days, while only 60% of the protein was liberated in that time and release continued up to day 63. Protein release kinetics could be described using the power law equation M t /M = kt n with an average time exponent n of 0.45 (±0.04) for loadings varying between 1 and 8%. A percolation threshold at 5% pure protein loading and 3–4% mixed loading (PEG and protein at a 1:1 mass ratio) could be identified. Release rate was found to decrease with increasing molecular weight.

Conclusions

Protein release from lipid-based matrices is a purely diffusion controlled mechanism. Potential protein stabilization approaches should address the time span between complete buffer penetration of the matrix and 100% release of the remaining loading, which would be exposed to an aqueous environment before leaving the matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

ADH:

alcohol dehydrogenase

BCA:

biscinchoninic acid

BSA:

bovine serum albumin

CLSM:

confocal laser scanning microscopy

DCM:

dichloromethane

DIPEA:

N-ethyldiisopropylamine

DMSO:

dimethylsulfoxide

FITC:

fluorescein isothiocyanate

IL:

interleukin

mPEG-NH2 :

methoxy-PEG-amine

MWCO:

molecular weight cut-off

PEG:

polyethylene glycol

TAMRA:

carboxy-tetramethylrhodamine

SRH:

sulforhodamine 101 hydrate

THF:

tetrahydrofurane

References

  1. V. R. Sinha, and A. Trehan. Biodegradable microspheres for protein delivery. J. Control Release 90(3):261–280 (2003).

    Article  PubMed  CAS  Google Scholar 

  2. C. Guse, S. Koennings, A. Maschke, M. Hacker, C. Becker, S. Schreiner, T. Blunk, T. Spruss, and A. Goepferich. Biocompatibility and erosion behavior of implants made of triglycerides and blends with cholesterol and phospholipids. Int. J. Pharm. 314(2):153–160 (2006).

    Article  PubMed  CAS  Google Scholar 

  3. S. Koennings, A. Sapin, T. Blunk, P. Menei, and A. Göpferich. Towards controlled release of BDNF-Manufacturing strategies for protein-loaded lipid implants and biocompatibility evaluation in the brain. J. Control Release, in press (2007).

  4. W. Vogelhuber, E. Magni, A. Gazzaniga, and A. Goepferich. Monolithic glyceryl trimyristate matrices for parenteral drug release applications. Eur. J. Pharm. Biopharm. 55(1):133–138 (2003).

    Article  PubMed  CAS  Google Scholar 

  5. B. Appel, A. Maschke, B. Weiser, H. Sarhan, C. Englert, P. Angele, T. Blunk, and A. Gopferich. Lipidic implants for controlled release of bioactive insulin: effects on cartilage engineered in vitro. Int. J. Pharm. 314(2):170–178 (2006).

    Article  PubMed  CAS  Google Scholar 

  6. A. Maschke, C. Becker, D. Eyrich, J. Kiermaier, T. Blunk, and A. Gopferich, Development of a spray congealing process for the preparation of insulin-loaded lipid microparticles and characterization thereof. Eur. J. Pharm. Biopharm. 65(2):175–187 (2007).

    Article  PubMed  CAS  Google Scholar 

  7. H. Reithmeier, J. Herrmann, and A. Gopferich. Lipid microparticles as a parenteral controlled release device for peptides. J. Control Release 73(2–3):339–350 (2001).

    Article  PubMed  CAS  Google Scholar 

  8. H. Reithmeier, J. Herrmann, and A. Gopferich. Development and characterization of lipid microparticles as a drug carrier for somatostatin. Int. J. Pharm. 218(1–2):133–143 (2001).

    Article  PubMed  CAS  Google Scholar 

  9. S. Mohl, and G. Winter. Continuous release of rh-interferon á-2a from triglyceride matrices. J. Control Release 97(1):67–78 (2004).

    Article  PubMed  CAS  Google Scholar 

  10. W. Vogelhuber, E. Magni, M. Mouro, T. Spruss, C. Guse, A. Gazzaniga, and A. Gopferich. Monolithic triglyceride matrices: a controlled-release system for proteins. Pharm. Dev. Technol. 8(1):71–79 (2003).

    Article  PubMed  CAS  Google Scholar 

  11. S. Koennings, E. Garcion, N. Faisant, P. Menei, J. P. Benoit, and A. Goepferich. In vitro investigation of lipid implants as a controlled release system for interleukin-18. Int. J. Pharm. 314(2):145–152 (2006).

    Article  PubMed  CAS  Google Scholar 

  12. A. Shenderova, T. G. Burke, and S. P. Schwendeman. Evidence for an acidic microclimate in PLGA microspheres. In Proceedings of the International Symposium on Controlled Release of Bioactive Materials, 2001, vol. 25 pp. 265–266.

  13. T. Estey, J. Kang, S. P. Schwendeman, and J. F. Carpenter. BSA degradation under acidic conditions: a model for protein instability during release from PLGA delivery systems. J. Pharm. Sci. 95(7):1626–1639 (2006).

    Article  PubMed  CAS  Google Scholar 

  14. G. Zhu, and S. P. Schwendeman. Stabilization of proteins encapsulated in cylindrical poly(lactide-co-glycolide) implants: mechanism of stabilization by basic additives. Pharm. Res. 17(3):351–357 (2000).

    Article  PubMed  CAS  Google Scholar 

  15. A. Lucke, J. Kiermaier and A. Gopferich. Peptide acylation by poly(alpha-hydroxy esters). Pharm. Res. 19(2):175–181 (2001).

    Article  Google Scholar 

  16. C. Guse, S. Koennings, F. Kreye, F. Siepmann, A. Goepferich, and J. Siepmann. Drug release from lipid-based implants: elucidation of the underlying mass transport mechanisms. Int. J. Pharm. 314(2):137–144 (2006).

    Article  PubMed  CAS  Google Scholar 

  17. A. Messaritaki, S. J. Black, C. F. van der Walle, and S. P. Rigby. NMR and confocal microscopy studies of the mechanisms of burst drug release from PLGA microspheres. J. Control Release 108(2–3):271–281 (2005).

    Article  PubMed  CAS  Google Scholar 

  18. P. K. Smith, R. I. Krohn, G. T. Hermanson, A. K. Mallia, F. H. Gartner, M. D. Provenzano, E. K. Fujimoto, N. M. Goeke, B. J. Olson, and D. C. Klenk. Measurement of protein using bicinchoninic acid. Anal. Biochem. 150:76–85 (1985).

    Article  PubMed  CAS  Google Scholar 

  19. C. Guermant, J. Brygier, D. Baeyens-Volant, M. Nijs, J. Vincentelli, C. Paul, and Y. Looze. Quantitative determination of polyethylene glycol based upon its salting out and partitioning of a dye into the resulting aqueous two-phase system. Anal. Biochem. 230(2):254–258 (1995).

    Article  PubMed  CAS  Google Scholar 

  20. P. L. Ritger, and N. A. Peppas. A simple equation for description of solute release: I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J. Control Release. 5(1):23–36 (1987).

    Article  CAS  Google Scholar 

  21. M. Le Maire, A. Ghazi, J. V. Moeller, and L. P. Aggerbeck. The use of gel chromatography for the determination of sizes and relative molecular masses of proteins. Interpretation of calibration curves in terms of gel-pore-size distribution. Biochem. J. 243(2):399–404 (1987).

    PubMed  CAS  Google Scholar 

  22. F. Carli, and L. Simioni. Kinetics of liquid capillary penetration into inert polymer matrixes. Pharm. Acta Helv. 53(11):320–326 (1978).

    PubMed  CAS  Google Scholar 

  23. R. Collins. Mathematical modelling of controlled release from implanted drug-impregnated monoliths. Pharm. Sci. Technol. Today 1(6):269–276 (1998).

    Article  CAS  Google Scholar 

  24. P. Colombo, R. Bettini, P. L. Catellani, P. Santi, and N. A. Peppas. Drug volume fraction profile in the gel phase and drug release kinetics in hydroxypropyl methyl cellulose matrixes containing a soluble drug. Eur. J. Pharm. Biopharm. 9(1):33–40 (1999).

    CAS  Google Scholar 

  25. S. W. Sun, Y. I. Jeong, S. W. Jung, and S. H. Kim. Characterization of FITC-albumin encapsulated poly(DL-lactide-co-glycolide) microspheres and its release characteristics. J. Microencapsul. 20(4):479–488 (2003).

    Article  PubMed  CAS  Google Scholar 

  26. O. Hosoya, S. Chono, Y. Sako, K. Juni, K. Morimoto, and T. Seki. Determination of diffusion coefficients of peptides and prediction of permeability through a porous membrane. J. Pharm. Pharmacol. 56(129):1501–1507 (2004).

    Article  PubMed  CAS  Google Scholar 

  27. D. Shugar. Measurement of lysozyme activity and the ultraviolet inactivation of lysozyme. Biochim. Biophys. Acta 8:302–309 (1952).

    Article  PubMed  CAS  Google Scholar 

  28. P. Jolles, and J. Jolles. What’s new in lysozyme research? Always a model system, today as yesterday. Mol. Cell. Biochem. 63(2):165–189 (2001).

    Google Scholar 

  29. R. A. Siegel, J. Kost, and R. Langer. Mechanistic studies of macromolecular drug release from macroporous polymers. I. Experiments and preliminary theory concerning completeness of drug release. J. Control Release 8(3):223–236 (1989).

    Article  CAS  Google Scholar 

  30. J. D. Bonny, and H. Leuenberger. Matrix type controlled release systems: I. Effect of percolation on drug dissolution kinetics. Pharm. Acta Helv. 66(5–6):160–164 (1991).

    PubMed  CAS  Google Scholar 

  31. J. D. Bonny, and H. Leuenberger. Matrix type controlled release systems II. Percolation effects in non-swellable matrices. Pharm. Acta Helv. 68(1):25–33 (1993).

    Article  CAS  Google Scholar 

  32. I. Caraballo, M. Millán, and A. M. Rabasco. Relationship between drug percolation threshold and particle size in matrix tablets. Pharm. Res. 13(3):387–390 (1996).

    Article  PubMed  CAS  Google Scholar 

  33. M. Millán, I. Caraballo, and A. M. Rabasco. The role of the drug/excipient particle size ratio in the percolation model for tablets. Pharm. Res. 15(2):216–220 (1998).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support of this work by the European Commission (Research and Technological Development Project; BCDDS: Biodegradable Controlled Drug Delivery Systems for the Treatment of Brain Diseases; Contract No.QLK3-CT-2001-02226).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achim Göpferich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koennings, S., Tessmar, J., Blunk, T. et al. Confocal Microscopy for the Elucidation of Mass Transport Mechanisms Involved in Protein Release from Lipid-based Matrices. Pharm Res 24, 1325–1335 (2007). https://doi.org/10.1007/s11095-007-9258-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9258-8

Key words

Navigation