Skip to main content
Log in

Accumulation of Succinimide in a Recombinant Monoclonal Antibody in Mildly Acidic Buffers Under Elevated Temperatures

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this paper was to identify the location of a succinimide and determine the rate of its formation and hydrolysis in a recombinant human monoclonal IgG2 antibody aged in mildly acidic buffers at elevated temperatures.

Materials and Methods

Cation exchange (CEX) HPLC separated multiple Main Peaks and high levels (up to 50%) of basic variants, the identification of which was an analytical challenge and required several complementary techniques. The relative abundance of the CEX basic variants was used to quantify the percentage of succinimide and to study the rates of its formation and hydrolysis.

Results

Mass decrease by approximately 18 Da for intact antibodies from the CEX basic fractions suggested succinimide formation from aspartic acid as the major modification. Reversed-phase HPLC/MS of the reduced and trypsin-digested samples detected an isoaspartate 30 (isoD30) in the light chain peptide A25-R37. Direct evidence that isoD30 was from succinimide was obtained by performing succinimide hydrolysis in \( {\text{H}}_{{\text{2}}} {}^{{{\text{18}}}}{\text{O}}\) followed by tryptic digestion in \( {\text{H}}_{{\text{2}}} {}^{{{\text{16}}}}{\text{O}}\).

Conclusions

Succinimide formation increased as pH became more acidic, whereas its hydrolysis was faster as pH became neutral and alkaline. Succinimide hydrolysis in a denatured sample was estimated to have completed in less than 2 h, but approximately three days for a similar pH but without denaturant. These observations suggest that protein conformation affects succinimide hydrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. C. Herman, T. C. Boone, and H. S. Lu. Characterization, formulation, and stability of Neupogen (Filgrastim), a recombinant human granulocyte-colony stimulating factor. In R. Pearlman and Y. J. Wang (eds.), Formulation, Characterization, and Stability of Protein Drugs. Case Histories, Plenum, New York, 1996, pp. 303–328.

    Google Scholar 

  2. X. M. Lam, J. Y. Yang, and J. L. Cleland. Antioxidants for prevention of methionine oxidation in recombinant monoclonal antibody HER2. J. Pharm. Sci. 86:1250–1255 (1997).

    Article  PubMed  CAS  Google Scholar 

  3. S. A. Bernhard, A. Berger, J. H. Carter, E. Katchalski, M. Sela, and Y. Shalitin. Co-operative effects of functional groups in peptides. I. Aspartyl-serine derivatives. J. Am. Chem. Soc. 84:2421–2434 (1962).

    Article  CAS  Google Scholar 

  4. T. Geiger and S. Clarke. Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides. Succinimide-linked reactions that contribute to protein degradation. J. Biol. Chem. 262:785–794 (1987).

    PubMed  CAS  Google Scholar 

  5. J. Cacia, R. Keck, L. G. Presta, and J. Frenz. Isomerization of an aspartic acid residue in the complementarity-determining regions of a recombinant antibody to human IgE: identification and effect on binding affinity. Biochemistry 35:1897–1903 (1996).

    Article  PubMed  CAS  Google Scholar 

  6. R. J. Harris, B. Kabakoff, F. D. Macchi, F. J. Shen, M. Y. Kwong, J. D. Andya, S. J. Shire, N. Bjork, K. Totpal, and A. B. Chen. Identification of multiple sources of charge heterogeneity in a recombinant antibody. J. Chromatogr., B, Biomed. Sci. Appl. 752:233–245 (2001).

    Article  CAS  Google Scholar 

  7. H. A. Doyle, R. J. Gee, and M. J. Mamula. A failure to repair self-proteins leads to T cell hyperproliferation and autoantibody production. J. Immunol. 171:2840–2847 (2003).

    PubMed  CAS  Google Scholar 

  8. H. A. Doyle, J. Zhou, M. J. Wolff, B. P. Harvey, R. M. Roman, R. J. Gee, R. A. Koski, and M. J. Mamula. Isoaspartyl posttranslational modification triggers anti-tumor T and B lymphocyte immunity. J. Biol. Chem. 281:32676–32683 (2006).

    Article  PubMed  CAS  Google Scholar 

  9. M. L. Yang, H. A. Doyle, R. J. Gee, J. D. Lowenson, S. Clarke, B. R. Lawson, D. W. Aswad, and M. J. Mamula. Intracellular protein modification associated with altered T cell functions in autoimmunity. J. Immunol. 177:4541–4549 (2006).

    PubMed  CAS  Google Scholar 

  10. W. Zhang and M. J. Czupryn. Analysis of isoaspartate in a recombinant monoclonal antibody and its charge isoforms. J. Pharm. Biomed. Anal. 30:1479–1490 (2003).

    Article  PubMed  CAS  Google Scholar 

  11. S. Capasso, A. J. Kirby, S. Salvadori, F. Sica, and A. Zagari. Kinetics and mechanism of the reversible isomerization of aspartic acid residues in tetrapeptides. J. Chem. Soc., Perkin Trans., II 437–442 (1995).

  12. C. Oliyai and R. T. Borchardt. Chemical pathways of peptide degradation. IV. Pathways, kinetics, and mechanism of degradation of an aspartyl residue in a model hexapeptide. Pharm. Res. 10:95–102 (1993).

    Article  PubMed  CAS  Google Scholar 

  13. C. Oliyai and R. T. Borchardt. Solution and solid-state chemical instabilities of asparaginyl and aspartyl residues in model peptides. In J. L. Cleland and R. Langer (eds.), Formulation and Delivery for Proteins and Peptides, American Chemical Society, Washington, DC, 1994, pp. 47–58.

    Google Scholar 

  14. G. Teshima, J. T. Stults, V. Ling, and E. Canova-Davis. Isolation and characterization of a succinimide variant of methionyl human growth hormone. J. Biol. Chem. 266:13544–13547 (1991).

    PubMed  CAS  Google Scholar 

  15. Y. Sadakane, T. Yamazaki, K. Nakagomi, T. Akizawa, N. Fujii, T. Tanimura, M. Kaneda, and Y. Hatanaka. Quantification of the isomerization of Asp residue in recombinant human alpha A-crystallin by reversed-phase HPLC. J. Pharm. Biomed. Anal. 30:1825–1833 (2003).

    Article  PubMed  CAS  Google Scholar 

  16. C. Milstein and J. R. Pink. Structure and evolution of immunoglobulins (review). Prog. Biophys. Mol. Biol. 21:209–263 (1970).

    Article  PubMed  CAS  Google Scholar 

  17. H. Tomizawa, H. Yamada, T. Ueda, and T. Imoto. Isolation and characterization of 101-succinimide lysozyme that possesses the cyclic imide at Asp101-Gly102. Biochemistry 33:8770–8774 (1994).

    Article  PubMed  CAS  Google Scholar 

  18. H. Tomizawa, H. Yamada, Y. Hashimoto, and T. Imoto. Stabilization of lysozyme against irreversible inactivation by alterations of the Asp-Gly sequences. Protein Eng. 8:1023–1028 (1995).

    Article  PubMed  CAS  Google Scholar 

  19. J. Najbauer, J. Orpiszewski, and D. W. Aswad. Molecular aging of tubulin: accumulation of isoaspartyl sites in vitro and in vivo. Biochemistry 35:5183–5190 (1996).

    Article  PubMed  CAS  Google Scholar 

  20. D. W. Aswad, M. V. Paranandi, and B. T. Schurter. Isoaspartate in peptides and proteins: formation, significance, and analysis. J. Pharm. Biomed. Anal. 21:1129–1136 (2000).

    Article  PubMed  CAS  Google Scholar 

  21. R. Bischoff, P. Lepage, M. Jaquinod, G. Cauet, M. Acker-Klein, D. Clesse, M. Laporte, A. Bayol, A. van Dorsselaer, and C. Roitsch. Sequence-specific deamidation: isolation and biochemical characterization of succinimide intermediates of recombinant hirudin. Biochemistry 32:725–734 (1993).

    Article  PubMed  CAS  Google Scholar 

  22. R. C. Stephenson and S. Clarke. Succinimide formation from aspartyl and asparaginyl peptides as a model for the spontaneous degradation of proteins. J. Biol. Chem. 264:6164–6170 (1989).

    PubMed  CAS  Google Scholar 

  23. J. B. Stimmel, B. M. Merrill, L. F. Kuyper, C. P. Moxham, J. T. Hutchins, M. E. Fling, and F. C. Kull, Jr. Site-specific conjugation on serine right-arrow cysteine variant monoclonal antibodies. J. Biol. Chem. 275:30445–30450 (2000).

    Article  PubMed  CAS  Google Scholar 

  24. J. A. Lindquist and P. N. McFadden. Incorporation of two 18O atoms into a peptide during isoaspartyl repair reveals repeated passage through a succinimide intermediate. J. Protein Chem. 13:553–560 (1994).

    Article  PubMed  CAS  Google Scholar 

  25. P. Schindler, D. Muller, W. Marki, H. Grossenbacher, and W. J. Richter. Characterization of a beta-Asp33 isoform of recombinant hirudin sequence variant 1 by low-energy collision-induced dissociation. J. Mass Spectrom. 31:967–974 (1996).

    Article  PubMed  CAS  Google Scholar 

  26. T. M. Dillon, P. V. Bondarenko, D. S. Rehder, G. D. Pipes, G. R. Kleemann, and M. S. Ricci. Optimization of a reversed-phase LC/MS method for characterizing recombinant antibody heterogeneity and stability. J. Chromatogr., A 1120:112–120 (2006).

    Article  CAS  Google Scholar 

  27. D. S. Rehder, T. M. Dillon, G. D. Pipes, and P. V. Bondarenko. Reversed-phase LC/MS analysis of reduced monoclonal antibodies in pharmaceutics. J. Chromatogr., A 1102:164–175 (2006).

    Article  CAS  Google Scholar 

  28. H. S. Gadgil, G. D. Pipes, T. M. Dillon, M. J. Treuheit, and P. V. Bondarenko. Improving mass accuracy of high performance liquid chromatography/electrospray ionization time-of-flight mass spectrometry of monoclonal antibodies. J. Am. Soc. Mass Spectrom. 17:867–872 (2006).

    Article  PubMed  CAS  Google Scholar 

  29. D. Chelius, D. S. Rehder, and P. V. Bondarenko. Identification and characterization of deamidation sites in the conserved regions of human immunoglobulin gamma antibodies. Anal. Chem. 77:6004–6011 (2005).

    Article  PubMed  CAS  Google Scholar 

  30. Z. Zhang. Prediction of low-energy collision-induced dissociation spectra of peptides. Anal. Chem. 76:3908–3922 (2004).

    Article  PubMed  CAS  Google Scholar 

  31. Z. Zhang. De novo peptide sequencing based on a divide-and-conquer algorithm and peptide tandem spectrum simulation. Anal. Chem. 76:6374–6383 (2004).

    Article  PubMed  CAS  Google Scholar 

  32. D. Chelius, K. Jing, A. Lueras, D. S. Rehder, T. M. Dillon, A. Vizel, R. S. Rajan, T. Li, M. J. Treuheit, and P. V. Bondarenko. Formation of pyroglutamic acid from N-terminal glutamic acid in immunoglobulin gamma antibodies. Anal. Chem. 78:2370–2376 (2006).

    Article  PubMed  CAS  Google Scholar 

  33. M. Xie, D. V. Velde, M. Morton, R. T. Borchardt, and R. L. Schowen. pH-Induced change in the rate-determining step for the hydrolysis of the Asp/Asn-derived cyclic-imide intermediate in protein degradation. J. Am. Chem. Soc. 118:8955–8956 (1996).

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Thomas Dillon for help with the RP HPLC of the intact IgG2 antibody; Alexis Lueras for her assistance with preparation of some of the aged protein samples; Barbara Norwood for her assistance in bioactivity measurements; Tiansheng Li for his support and David Brems for his comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel V. Bondarenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, G.C., Chelius, D., Xiao, G. et al. Accumulation of Succinimide in a Recombinant Monoclonal Antibody in Mildly Acidic Buffers Under Elevated Temperatures. Pharm Res 24, 1145–1156 (2007). https://doi.org/10.1007/s11095-007-9241-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9241-4

Key words

Navigation