Purpose
This study was conducted to develop and evaluate the physicochemical and aerodynamic characteristics of lipid-coated dry powder formulations presenting particularly high lung deposition.
Methods
Lipid-coated particles were prepared by spray-drying suspensions with different concentrations of tobramycin and lipids. The solid-state properties of the formulations, including particle size and morphology, were assessed by scanning electron microscopy and laser diffraction. Aerosol performance was studied by dispersing the powders into a Multistage Liquid Impinger and determining drug deposition by high-performance liquid chromatography.
Results
Particle size distributions of the formulations were unimodal, narrow with more than 90% of the particles having a diameter of less than 2.8 μm. All powder formulations exhibited mass median diameters of less than 1.3 and 3.2 μm, as determined by two different laser diffraction methods, the Malvern's Mastersizer® and Spraytec®, respectively. The fine particle fraction varied within a range of 50.5 and 68.3%.
Conclusions
Lipid coating of tobramycin formulations resulted in a reduced agglomeration tendency and in high fine particle fraction values, thus improving drug deposition. The very low excipients content (about 5% m/m) of these formulations offers the benefit of delivering particularly huge concentrations of antibiotic directly to the site of infection, while minimizing systemic exposure, and may provide a valuable alternative treatment of cystic fibrosis.
This is a preview of subscription content, log in to check access.







References
- 1.
R. Moss (2002)
Long-term benefits of inhaled tobramycin in adolescent patients with cystic fibrosis Chest 121 55–63 11796432 1:CAS:528:DC%2BD38Xht1yltbs%3D 10.1378/chest.121.1.55 - 2.
F. S. Collins (1992)
Cystic fibrosis: molecular biology and therapeutic implications Science 256 774–779 1375392 1:CAS:528:DyaK38XktVGit7c%3D - 3.
R. Moss (1995)
Cystic fibrosis: pathogenesis, pulmonary infection, and treatment Clin. Infect. Dis. 21 839–849 8645828 1:CAS:528:DyaK2MXpsl2jt78%3D - 4.
M. E. Hodson C. G. Gallagher J. R. W. Govan (2002)
A randomised clinical trial of nebulised tobramycin or colistin in cystic fibrosis Eur. Respir. J. 20 658–664 12358344 1:CAS:528:DC%2BD38Xotl2is7c%3D 10.1183/09031936.02.00248102 - 5.
C. Koch N. Hoiby (1993)
Pathogenesis of cystic fibrosis Lancet 341 1065–1069 7682274 1:STN:280:ByyB38rnt1U%3D 10.1016/0140-6736(93)92422-P - 6.
D. E. Geller W. H. Pitlick P. A. Nardella W. G. Tracewell B. W. Ramsey (2002)
Pharmacokinetics and bioavailability of aerolized tobramycin in cystic fibrosis Chest 122 219–226 12114362 1:CAS:528:DC%2BD38XmtF2is7s%3D 10.1378/chest.122.1.219 - 7.
P. M. Mendelman A. L. Smith J. Levy A. Weber B. Ramsey R. L. Davis (1985)
Aminoglycoside penetration, inactivation, an efficacy in cystic fibrosis sputum Am. Rev. Respir. Dis. 132 761–765 3931522 1:CAS:528:DyaL2MXmtVGks78%3D - 8.
L. Saiman (1998)
Use of aerolized antibiotics in patients with cystic fibrosis Pediatr. Infect. Dis. J. 17 158–159 9493815 1:STN:280:DyaK1c7lt1yjuw%3D%3D 10.1097/00006454-199802000-00016 - 9.
C. H. Feng S. J. Lin H. L. Wu S. H. Chen (2002)
Trace analysis of tobramycin in human plasma by derivatization and high-performance liquid chromatography with ultraviolet detection J. Chromatogr. B. 780 349–354 1:CAS:528:DC%2BD38Xptlans7o%3D 10.1016/S1570-0232(02)00544-5 - 10.
J. Sham Y. Zhang W. Finlay W. Roa R. Löbenberg (2004)
Formulation and characterization of spray-dried powders containing nanoparticles for aerosol delivery to the lung Int. J. Pharm. 269 457–467 14706257 1:CAS:528:DC%2BD3sXhtVWjsrzJ 10.1016/j.ijpharm.2003.09.041 - 11.
M. Newhouse P. Hirst S. Duddu Y. Walter T. Tarara A. Clark J. Weers (2003)
Inhalation of a dry powder tobramycin pulmosphere formulation in healthy volunteers Chest 124 360–366 12853545 1:CAS:528:DC%2BD3sXmsFClt7s%3D 10.1378/chest.124.1.360 - 12.
H. Steckel H. Brandes (2004)
A novel spray-drying technique to produce low density particles for pulmonary delivery Int. J. Pharm. 278 187–195 15158961 1:CAS:528:DC%2BD2cXktFOiu7o%3D 10.1016/j.ijpharm.2004.03.010 - 13.
M. Irngartinger V. Camuglia M. Damn J. Goede H. W. Frijlink (2004)
Pulmonary delivery of therapeutic peptides via dry powder inhalation: effects of micronisation and manufacturing Eur. J. Pharm. Biopharm. 58 7–14 15207532 1:CAS:528:DC%2BD2cXltVGht7Y%3D 10.1016/j.ejpb.2004.03.016 - 14.
R. J. Malcomson J. K. Embleton (1998)
Dry powder formulations for pulmonary delivery Pharm. Sci. Tech. Today 1 394–398 10.1016/S1461-5347(98)00099-6 - 15.
J. G. Weers (2000)
Dispersible powders for inhalation applications Innov. Pharm. Technol. 1 111–116 1:CAS:528:DC%2BD3MXktlemt70%3D - 16.
J. C. Feeley P. York B. S. Sumby H. Dicks (1998)
Determination of surface properties and flow characteristics of salbutamol sulphate, before and after micronisation Int. J. Pharm. 172 89–96 1:CAS:528:DyaK1cXls1equrc%3D 10.1016/S0378-5173(98)00179-3 - 17.
A. Chawla K. M. G. Taylor J. M. Newton M. C. R. Johnson (1994)
Production of spray-dried salbutamol sulphate for use in dry powder aerosol formulations Int. J. Pharm. 108 233–240 1:CAS:528:DyaK2cXkvFWlsb8%3D 10.1016/0378-5173(94)90132-5 - 18.
L. A. Dellamary T. E. Tarara C. H. Woelk A. Adractas M. L. Costello H. Gill J. G. Weers (2000)
Hollow porous particles in metered dose inhalers Pharm. Res. 17 168–174 10751031 1:CAS:528:DC%2BD3cXitVOqur4%3D 10.1023/A:1007513213292 - 19.
A. J. Hickey T. B. Martonen Y. Yang (1996)
Theoretical relationship of lung deposition to the fine particle fraction of inhalation aerosols Pharm. Acta Helv. 71 185–190 8818308 1:CAS:528:DyaK28XlvFOmsLo%3D 10.1016/0031-6865(96)00014-3 - 20.
J. Elversson A. Millqvist-Fureby G. Alderborn U. Elofsson (2003)
Droplet and particle size relationship and shell thickness of inhalable lactose particles during spray-drying J. Pharm. Sci. 92 900–910 12661075 1:CAS:528:DC%2BD3sXislOgsLs%3D 10.1002/jps.10352 - 21.
C. Bosquillon P. Rouxhet F. Ahimou D. Simon C. Culot V. Préat R. Vanbever (2004)
Aerosolization properties, surface composition and physical state of spray-dried protein powders J.Control. Release 99 357–367 15451594 1:CAS:528:DC%2BD2cXnvVCjs78%3D 10.1016/j.jconrel.2004.07.022 - 22.
J. Heyder J. Gebhart G. Rudolf C. F. Schiller W. Stahlhofen (1986)
Deposition of particles in the human respiratory tract in the size range 0.005–15 μm J. Aerosol Sci. 17 811–825 10.1016/0021-8502(86)90035-2 - 23.
Th. Sebti K. Amighi (1993)
Solid lipid particles as pharmaceutically acceptable fillers or carriers for inhalation, abstract in Pharmaceutical Sciences Fair & Exhibition, June 12–17 2005 Nice, France Exp. Lung Res. 19 1–19 - 24.
M. A. Myers D. A. Thomas L. Straub W. Soucy R. W. Niven M. Kaltenbach C. I. Hood H. Schreir R. J. Gonzalez-Rothi (1993)
Pulmonary effects of chronic exposure to liposome aerosols in mice Exp. Lung Res. 19 1–19 8440200 1:STN:280:ByyC2sfjslI%3D - 25.
T. R. Desai J. P. Wong R. E. W. Hancock W. H. Finlay (2001)
A novel approach to the pulmonary delivery of liposomes in dry powder form to eliminate the deleterious effects of milling J. Pharm. Sci. 91 2 482–491 10.1002/jps.10021 - 26.
A. Haynes M. S. Shaik H. Krapup M. Singh (2004)
Evaluation of the Malvern Spraytec® with inhalation cell for the measurement of particle size distribution from metered dose inhalers J. Pharm. Sci. 93 2 349–363 14705192 1:CAS:528:DC%2BD2cXhsFagu7Y%3D 10.1002/jps.10558 - 27.
T. A. Standaert D. Vandevanter B. W. Ramsey M. Vasiljev P. Nardella D. Gmur C. Bredl A. Murphy A. B. Montgomery (2000)
The choice of compressor effects the aerosol parameters and the delivery of tobramycin from a single model nebulizer J. Aerosol Med. 13 2 147–153 11010595 1:STN:280:DC%2BD3M%2Fgs1eksw%3D%3D 10.1089/089426800418677
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Pilcer, G., Sebti, T. & Amighi, K. Formulation and Characterization of Lipid-Coated Tobramycin Particles for Dry Powder Inhalation. Pharm Res 23, 931–940 (2006). https://doi.org/10.1007/s11095-006-9789-4
Received:
Accepted:
Published:
Issue Date:
Key Words
- dry powder inhaler (DPI)
- lipid-coated particles
- pulmonary delivery
- spray drying
- tobramycin