Advertisement

Pharmaceutical Research

, Volume 23, Issue 5, pp 931–940 | Cite as

Formulation and Characterization of Lipid-Coated Tobramycin Particles for Dry Powder Inhalation

  • Gabrielle Pilcer
  • Thami Sebti
  • Karim AmighiEmail author
Research Paper

Purpose

This study was conducted to develop and evaluate the physicochemical and aerodynamic characteristics of lipid-coated dry powder formulations presenting particularly high lung deposition.

Methods

Lipid-coated particles were prepared by spray-drying suspensions with different concentrations of tobramycin and lipids. The solid-state properties of the formulations, including particle size and morphology, were assessed by scanning electron microscopy and laser diffraction. Aerosol performance was studied by dispersing the powders into a Multistage Liquid Impinger and determining drug deposition by high-performance liquid chromatography.

Results

Particle size distributions of the formulations were unimodal, narrow with more than 90% of the particles having a diameter of less than 2.8 μm. All powder formulations exhibited mass median diameters of less than 1.3 and 3.2 μm, as determined by two different laser diffraction methods, the Malvern's Mastersizer® and Spraytec®, respectively. The fine particle fraction varied within a range of 50.5 and 68.3%.

Conclusions

Lipid coating of tobramycin formulations resulted in a reduced agglomeration tendency and in high fine particle fraction values, thus improving drug deposition. The very low excipients content (about 5% m/m) of these formulations offers the benefit of delivering particularly huge concentrations of antibiotic directly to the site of infection, while minimizing systemic exposure, and may provide a valuable alternative treatment of cystic fibrosis.

Key Words

dry powder inhaler (DPI) lipid-coated particles pulmonary delivery spray drying tobramycin 

References

  1. 1.
    Moss, R. 2002Long-term benefits of inhaled tobramycin in adolescent patients with cystic fibrosisChest1215563PubMedCrossRefGoogle Scholar
  2. 2.
    Collins, F. S. 1992Cystic fibrosis: molecular biology and therapeutic implicationsScience256774779PubMedGoogle Scholar
  3. 3.
    Moss, R. 1995Cystic fibrosis: pathogenesis, pulmonary infection, and treatmentClin. Infect. Dis.21839849PubMedGoogle Scholar
  4. 4.
    Hodson, M. E., Gallagher, C. G., Govan, J. R. W. 2002A randomised clinical trial of nebulised tobramycin or colistin in cystic fibrosisEur. Respir. J.20658664PubMedCrossRefGoogle Scholar
  5. 5.
    Koch, C., Hoiby, N. 1993Pathogenesis of cystic fibrosisLancet34110651069PubMedCrossRefGoogle Scholar
  6. 6.
    Geller, D. E., Pitlick, W. H., Nardella, P. A., Tracewell, W. G., Ramsey, B. W. 2002Pharmacokinetics and bioavailability of aerolized tobramycin in cystic fibrosisChest122219226PubMedCrossRefGoogle Scholar
  7. 7.
    Mendelman, P. M., Smith, A. L., Levy, J., Weber, A., Ramsey, B., Davis, R. L. 1985Aminoglycoside penetration, inactivation, an efficacy in cystic fibrosis sputumAm. Rev. Respir. Dis.132761765PubMedGoogle Scholar
  8. 8.
    Saiman, L. 1998Use of aerolized antibiotics in patients with cystic fibrosisPediatr. Infect. Dis. J.17158159PubMedCrossRefGoogle Scholar
  9. 9.
    Feng, C. H., Lin, S. J., Wu, H. L., Chen, S. H. 2002Trace analysis of tobramycin in human plasma by derivatization and high-performance liquid chromatography with ultraviolet detectionJ. Chromatogr. B.780349354CrossRefGoogle Scholar
  10. 10.
    Sham, J., Zhang, Y., Finlay, W., Roa, W., Löbenberg, R. 2004Formulation and characterization of spray-dried powders containing nanoparticles for aerosol delivery to the lungInt. J. Pharm.269457467PubMedCrossRefGoogle Scholar
  11. 11.
    Newhouse, M., Hirst, P., Duddu, S., Walter, Y., Tarara, T., Clark, A., Weers, J. 2003Inhalation of a dry powder tobramycin pulmosphere formulation in healthy volunteersChest124360366PubMedCrossRefGoogle Scholar
  12. 12.
    Steckel, H., Brandes, H. 2004A novel spray-drying technique to produce low density particles for pulmonary deliveryInt. J. Pharm.278187195PubMedCrossRefGoogle Scholar
  13. 13.
    Irngartinger, M., Camuglia, V., Damn, M., Goede, J., Frijlink, H. W. 2004Pulmonary delivery of therapeutic peptides via dry powder inhalation: effects of micronisation and manufacturingEur. J. Pharm. Biopharm.58714PubMedCrossRefGoogle Scholar
  14. 14.
    Malcomson, R. J., Embleton, J. K. 1998Dry powder formulations for pulmonary deliveryPharm. Sci. Tech. Today1394398CrossRefGoogle Scholar
  15. 15.
    Weers, J. G. 2000Dispersible powders for inhalation applicationsInnov. Pharm. Technol.1111116Google Scholar
  16. 16.
    Feeley, J. C., York, P., Sumby, B. S., Dicks, H. 1998Determination of surface properties and flow characteristics of salbutamol sulphate, before and after micronisationInt. J. Pharm.1728996CrossRefGoogle Scholar
  17. 17.
    Chawla, A., Taylor, K. M. G., Newton, J. M., Johnson, M. C. R. 1994Production of spray-dried salbutamol sulphate for use in dry powder aerosol formulationsInt. J. Pharm.108233240CrossRefGoogle Scholar
  18. 18.
    Dellamary, L. A., Tarara, T. E., Woelk, C. H., Adractas, A., Costello, M. L., Gill, H., Weers, J. G. 2000Hollow porous particles in metered dose inhalersPharm. Res.17168174PubMedCrossRefGoogle Scholar
  19. 19.
    Hickey, A. J., Martonen, T. B., Yang, Y. 1996Theoretical relationship of lung deposition to the fine particle fraction of inhalation aerosolsPharm. Acta Helv.71185190PubMedCrossRefGoogle Scholar
  20. 20.
    Elversson, J., Millqvist-Fureby, A., Alderborn, G., Elofsson, U. 2003Droplet and particle size relationship and shell thickness of inhalable lactose particles during spray-dryingJ. Pharm. Sci.92900910PubMedCrossRefGoogle Scholar
  21. 21.
    Bosquillon, C., Rouxhet, P., Ahimou, F., Simon, D., Culot, C., Préat, V., Vanbever, R. 2004Aerosolization properties, surface composition and physical state of spray-dried protein powdersJ.Control. Release99357367PubMedCrossRefGoogle Scholar
  22. 22.
    Heyder, J., Gebhart, J., Rudolf, G., Schiller, C. F., Stahlhofen, W. 1986Deposition of particles in the human respiratory tract in the size range 0.005–15 μmJ. Aerosol Sci.17811825CrossRefGoogle Scholar
  23. 23.
    Sebti, Th., Amighi, K. 1993Solid lipid particles as pharmaceutically acceptable fillers or carriers for inhalation, abstract in Pharmaceutical Sciences Fair & Exhibition, June 12–17 2005 Nice, FranceExp. Lung Res.19119Google Scholar
  24. 24.
    Myers, M. A., Thomas, D. A., Straub, L., Soucy, W., Niven, R. W., Kaltenbach, M., Hood, C. I., Schreir, H., Gonzalez-Rothi, R. J. 1993Pulmonary effects of chronic exposure to liposome aerosols in miceExp. Lung Res.19119PubMedGoogle Scholar
  25. 25.
    Desai, T. R., Wong, J. P., Hancock, R. E. W., Finlay, W. H. 2001A novel approach to the pulmonary delivery of liposomes in dry powder form to eliminate the deleterious effects of millingJ. Pharm. Sci.91482491CrossRefGoogle Scholar
  26. 26.
    Haynes, A., Shaik, M. S., Krapup, H., Singh, M. 2004Evaluation of the Malvern Spraytec® with inhalation cell for the measurement of particle size distribution from metered dose inhalersJ. Pharm. Sci.93349363PubMedCrossRefGoogle Scholar
  27. 27.
    Standaert, T. A., Vandevanter, D., Ramsey, B. W., Vasiljev, M., Nardella, P., Gmur, D., Bredl, C., Murphy, A., Montgomery, A. B. 2000The choice of compressor effects the aerosol parameters and the delivery of tobramycin from a single model nebulizerJ. Aerosol Med.13147153PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Laboratory of Pharmaceutics and BiopharmaceuticsUniversité Libre de BruxellesBelgium
  2. 2.Boulevard du TriompheCampus de la PlaineBrusselsBelgium

Personalised recommendations