Skip to main content

Advertisement

Log in

Comparison of Nanogel Drug Carriers and their Formulations with Nucleoside 5′-Triphosphates

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Purpose

The aim of the study is to synthesize and characterize nanogel carriers composed of amphiphilic polymers and cationic polyethylenimine for encapsulation and delivery of cytotoxic nucleoside analogs 5′-triphosphates (NTPs) into cancer cells.

Methods

Nanogels were synthesized by a novel micellar approach and compared with carriers prepared by the emulsification/evaporation method. Complexes of nanogels with NTP were prepared; particle size and in vitro drug release were characterized. Resistance of the nanogel-encapsulated NTP to enzymatic hydrolysis was analyzed by ion-pair high-performance liquid chromatography. Binding to isolated cellular membranes, cellular accumulation and cytotoxicity were compared using breast carcinoma cell lines CL-66, MCF-7, and MDA-MB-231. In vivo biodistribution of the 3H-labeled NTP encapsulated in different types of nanogels was evaluated in comparison to the injected NTP alone.

Results

Nanogels with a particle size of 100–300 nm in the unloaded form and less than 140 nm in the NTP-loaded form were prepared. An in vitro release of NTP was >50% during the first 24 h. Nanogel formulations ensured increased NTP drug stability against enzymatic hydrolysis as compared to the drug alone. Pluronic®-based nanogels NG(F68), NG(F127), NG(P85), and NGM(P123) demonstrated 2–2.5 times enhanced interaction with cellular membranes and association with various cancer cells compared to NG(PEG). Among them, NG(F68) and NG(F127) exhibited the lowest cytotoxicity. Injection of nanogel-formulated NTP significantly modulated the drug accumulation in different mouse organs.

Conclusions

Nanogels composed of Pluronic® F68 and P123 were shown to display certain advanced properties compared to NG(PEG) as a drug delivery system for NTP analogs. Formulations of nucleoside analogs in active NTP form with these nanogels will improve the delivery of these cytotoxic drugs to cancer cells and the therapeutic potential of this anticancer chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CMC:

critical micellization concentration

CTP:

cytidine 5′-triphosphate

FBS:

fetal bovine serum

HLB:

hydrophilic–lipophilic balance

MWCO:

molecular weight cutoff

NA:

nucleoside analogs

NMP:

nucleoside 5′-monophosphate

NTP:

nucleoside 5′-triphosphate

PEG:

poly(ethylene glycol)

PEI:

polyethylenimine

PEO:

poly(ethylene oxide)

PPO:

poly(propylene oxide)

References

  1. R. Duncan (2003) ArticleTitleThe dawning era of polymer therapeutics Nat. Rev., Drug Discov. 2 347–360 Occurrence Handle1:CAS:528:DC%2BD3sXjslamtb0%3D Occurrence Handle10.1038/nrd1088

    Article  CAS  Google Scholar 

  2. C. M. Galmarini J. R. Mackey C. Dumontet (2002) ArticleTitleNucleoside analogues and nucleobases in cancer treatment Lancet Oncol. 3 415–424 Occurrence Handle12142171 Occurrence Handle1:CAS:528:DC%2BD38Xls1Wisrw%3D Occurrence Handle10.1016/S1470-2045(02)00788-X

    Article  PubMed  CAS  Google Scholar 

  3. J. Balzarini (1994) ArticleTitleMetabolism and mechanism of antiretroviral action of purine and pyrimidine derivatives Pharm. World Sci. 16 113–126 Occurrence Handle8032337 Occurrence Handle1:CAS:528:DyaK2cXlsVyju7c%3D Occurrence Handle10.1007/BF01880662

    Article  PubMed  CAS  Google Scholar 

  4. G. Antonelli O. Turriziani A. Verri P. Narciso F. Ferri G. D'Offizi F. Dianzani (1996) ArticleTitleLong-term exposure to zidovudine affects in vitro and in vivo the efficiency of phosphorylation of thymidine kinase AIDS Res. Hum. Retrovir. 12 223–228 Occurrence Handle8835200 Occurrence Handle1:CAS:528:DyaK28Xhs1Ojsr8%3D Occurrence Handle10.1089/aid.1996.12.223

    Article  PubMed  CAS  Google Scholar 

  5. G. Hoever B. Groeschel P. Chandra H. W. Doerr J. Cinatl (2003) ArticleTitleThe mechanism of 3′-azido-2′,3′-dideoxythymidine resistance to human lymphoid cells Int. J. Mol. Med. 11 743–747 Occurrence Handle12736716 Occurrence Handle1:CAS:528:DC%2BD3sXksFSlt7s%3D

    PubMed  CAS  Google Scholar 

  6. C. R. Wagner V. V. Iyer E. J. McIntee (2000) ArticleTitlePronucleotides: toward the in vivo delivery of antiviral and anticancer nucleotides Med. Res. Rev. 20 417–451 Occurrence Handle11058891 Occurrence Handle1:CAS:528:DC%2BD3cXotVOiurc%3D Occurrence Handle10.1002/1098-1128(200011)20:6<417::AID-MED1>3.0.CO;2-Z

    Article  PubMed  CAS  Google Scholar 

  7. E. J. McIntee R. P. Remmel R. F. Schinazi T. W. Abraham C. R. Wagner (1997) ArticleTitleProbing the mechanism of action and decomposition of amino acid phosphomonoester amidates of antiviral nucleoside prodrugs J. Med. Chem. 40 3323–3331 Occurrence Handle9341906 Occurrence Handle1:CAS:528:DyaK2sXmtlWksrk%3D Occurrence Handle10.1021/jm960694f

    Article  PubMed  CAS  Google Scholar 

  8. G. M. Wijk Particlevan K. Y. Hostetler E. Kroneman D. D. Richman C. N. Sridhar R. Kumar H. Bosch Particlevan den (1994) ArticleTitleSynthesis and antiviral activity of 3′-azido-3′-deoxythymidine triphosphate distearoylglycerol: a novel phospholipid conjugate of the anti-HIV agent AZT Chem. Phys. Lipids 70 213–222 Occurrence Handle8033292 Occurrence Handle10.1016/0009-3084(94)90089-2

    Article  PubMed  Google Scholar 

  9. L. Cattel M. Ceruti F. Dosio (2003) ArticleTitleFrom conventional to stealth liposomes: a new frontier in cancer chemotherapy Tumori 89 237–249 Occurrence Handle12908776 Occurrence Handle1:CAS:528:DC%2BD3sXnt1Giurc%3D

    PubMed  CAS  Google Scholar 

  10. M. L. Immordino P. Brusa F. Rocco S. Arpicco M. Ceruti L. Cattel (2004) ArticleTitlePreparation, characterization, cytotoxicity and pharmacokinetics of liposomes containing lipophilic gemcitabine prodrugs J. Control Release 100 331–346 Occurrence Handle15567500 Occurrence Handle1:CAS:528:DC%2BD2cXhtVaitLrK Occurrence Handle10.1016/j.jconrel.2004.09.001

    Article  PubMed  CAS  Google Scholar 

  11. P. Crosasso P. Brusa F. Dosio S. Arpicco D. Pacchioni F. Schuber L. Cattel (1997) ArticleTitleAntitumoral activity of liposomes and immunoliposomes containing 5-fluorouridine prodrugs J. Pharm. Sci. 86 832–839 Occurrence Handle9232525 Occurrence Handle1:CAS:528:DyaK2sXjslOht7w%3D Occurrence Handle10.1021/js9604467

    Article  PubMed  CAS  Google Scholar 

  12. K. R. Patel J. D. Baldeschwieler (1984) ArticleTitleTreatment of intravenously implanted Lewis lung carcinoma with liposome-encapsulated cytosine arabinoside and non-specific immunotherapy Int. J. Cancer 34 415–420 Occurrence Handle6384069 Occurrence Handle1:STN:280:DyaL2M%2FgsFyjsA%3D%3D

    PubMed  CAS  Google Scholar 

  13. S. V. Vinogradov E. Kohli A. D. Zeman (2005) ArticleTitleCross-linked polymeric nanogel formulations of 5′-triphosphates of nucleoside analogues: role of the cellular membrane in drug release Mol. Pharm. 2 449–461 Occurrence Handle16323952 Occurrence Handle1:CAS:528:DC%2BD2MXhtVWrt77M Occurrence Handle10.1021/mp0500364

    Article  PubMed  CAS  Google Scholar 

  14. S. V. Vinogradov A. D. Zeman E. V. Batrakova A. V. Kabanov (2005) ArticleTitlePolyplex nanogel formulations for drug delivery of cytotoxic nucleoside analogs J. Control Release 107 143–157 Occurrence Handle16039001 Occurrence Handle1:CAS:528:DC%2BD2MXpvVSnsr4%3D Occurrence Handle10.1016/j.jconrel.2005.06.002

    Article  PubMed  CAS  Google Scholar 

  15. S. Grant (1998) ArticleTitleAra-C: cellular and molecular pharmacology Adv. Cancer Res. 72 197–233 Occurrence Handle9338077 Occurrence Handle1:CAS:528:DyaK2sXotVyktrw%3D Occurrence Handle10.1016/S0065-230X(08)60703-4

    Article  PubMed  CAS  Google Scholar 

  16. S. V. Vinogradov T. K. Bronich A. V. Kabanov (2002) ArticleTitleNanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells Adv. Drug Deliv. Rev. 54 135–147 Occurrence Handle11755709 Occurrence Handle1:CAS:528:DC%2BD38XhvVWq Occurrence Handle10.1016/S0169-409X(01)00245-9

    Article  PubMed  CAS  Google Scholar 

  17. S. V. Vinogradov E. V. Batrakova A. V. Kabanov (2004) ArticleTitleNanogels for oligonucleotide delivery to the brain Bioconjug. Chem. 15 50–60 Occurrence Handle14733583 Occurrence Handle1:CAS:528:DC%2BD3sXhtVWit7bN Occurrence Handle10.1021/bc034164r

    Article  PubMed  CAS  Google Scholar 

  18. H. Hamada T. Tsuruo (1988) ArticleTitleCharacterization of the ATPase activity of the Mr 170,000 to 180,000 membrane glycoprotein (P-glycoprotein) associated with multidrug resistance in K562/ADM cells Cancer Res. 48 4926–4932 Occurrence Handle2900677 Occurrence Handle1:CAS:528:DyaL1cXlvVKjsbo%3D

    PubMed  CAS  Google Scholar 

  19. S. Vinogradov E. Batrakova S. Li A. Kabanov (1999) ArticleTitlePolyion complex micelles with protein-modified corona for receptor-mediated delivery of oligonucleotides into cells Bioconjug. Chem. 10 851–860 Occurrence Handle10502353 Occurrence Handle1:CAS:528:DyaK1MXltFKgtrk%3D Occurrence Handle10.1021/bc990037c

    Article  PubMed  CAS  Google Scholar 

  20. T. Mosmann (1983) ArticleTitleRapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays J. Immunol. Methods 65 55–63 Occurrence Handle6606682 Occurrence Handle1:STN:280:BiuD1cbgsFE%3D Occurrence Handle10.1016/0022-1759(83)90303-4

    Article  PubMed  CAS  Google Scholar 

  21. Y. S. Kaneko K.T. Okano (1998) Temperature-responsive hydrogels as intelligent materials, Biorelated Polymers and Gels Academic Press New York 29–66

    Google Scholar 

  22. N. Kashyap N. Kumar M. N. Kumar (2005) ArticleTitleHydrogels for pharmaceutical and biomedical applications Crit. Rev. Ther. Drug Carr. Syst. 22 107–149 Occurrence Handle1:CAS:528:DC%2BD2MXks1Wkt7w%3D Occurrence Handle10.1615/CritRevTherDrugCarrierSyst.v22.i2.10

    Article  CAS  Google Scholar 

  23. N. A. Peppas K. M. Wood J. O. Blanchette (2004) ArticleTitleHydrogels for oral delivery of therapeutic proteins Expert Opin. Biol. Ther. 4 881–887 Occurrence Handle15174970 Occurrence Handle1:CAS:528:DC%2BD2cXksVaqtL4%3D Occurrence Handle10.1517/14712598.4.6.881

    Article  PubMed  CAS  Google Scholar 

  24. A. V. Kabanov P. Lemieux S. Vinogradov V. Alakhov (2002) ArticleTitlePluronic block copolymers: novel functional molecules for gene therapy Adv. Drug Deliv. Rev. 54 223–233 Occurrence Handle11897147 Occurrence Handle1:CAS:528:DC%2BD38XhvVWnsrw%3D Occurrence Handle10.1016/S0169-409X(02)00018-2

    Article  PubMed  CAS  Google Scholar 

  25. V. Alakhov G. Pietrzynski K. Patel A. Kabanov L. Bromberg T. A. Hatton (2004) ArticleTitlePluronic block copolymers and pluronic poly(acrylic acid) microgels in oral delivery of megestrol acetate J. Pharm. Pharmacol. 56 1233–1241 Occurrence Handle15482637 Occurrence Handle1:CAS:528:DC%2BD2cXptFajurs%3D Occurrence Handle10.1211/0022357044427

    Article  PubMed  CAS  Google Scholar 

  26. L. Bromberg M. Temchenko V. Alakhov T. A. Hatton (2004) ArticleTitleBioadhesive properties and rheology of polyether-modified poly(acrylic acid) hydrogels Int. J. Pharm. 282 45–60 Occurrence Handle15336381 Occurrence Handle1:CAS:528:DC%2BD2cXntVGhs7k%3D Occurrence Handle10.1016/j.ijpharm.2004.05.030

    Article  PubMed  CAS  Google Scholar 

  27. J. Cleary L. Bromberg E. Magner (2004) ArticleTitleAdhesion of polyether-modified poly(acrylic acid) to mucin Langmuir 20 9755–9762 Occurrence Handle15491211 Occurrence Handle1:CAS:528:DC%2BD2cXnvVKqtLc%3D Occurrence Handle10.1021/la048993s

    Article  PubMed  CAS  Google Scholar 

  28. F. Tirnaksiz J. R. Robinson (2005) ArticleTitleRheological, mucoadhesive and release properties of pluronic F-127 gel and pluronic F-127/polycarbophil mixed gel systems Pharmazie 60 518–523 Occurrence Handle16076078 Occurrence Handle1:CAS:528:DC%2BD2MXmsVaqu7o%3D

    PubMed  CAS  Google Scholar 

Download references

Aknowledgments

This work was financially supported by NIH R01 grant CA102791 (S.V.V.). The authors are extremely grateful to Drs. Elena Batrakova and William Chaney for helpful discussion and Michael Jacobsen for valuable assistance in the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serguei V. Vinogradov.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vinogradov, S.V., Kohli, E. & Zeman, A.D. Comparison of Nanogel Drug Carriers and their Formulations with Nucleoside 5′-Triphosphates. Pharm Res 23, 920–930 (2006). https://doi.org/10.1007/s11095-006-9788-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9788-5

Key Words

Navigation