Skip to main content
Log in

Molecular Mobility in Glass Forming Fananserine: A Dielectric, NMR, and TMDSC Investigation

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Purpose

This study was conducted to characterize the molecular mobility of supercooled fananserine and derive from this analysis the non-Arrhenius and nonexponential properties of the primary α-relaxation.

Methods

The use of three investigation techniques of the molecular mobility, namely, dielectric relaxation, modulated differential scanning calorimetry, and proton nuclear magnetic resonance, allowed us to describe the dynamic properties of supercooled fananserine on a wide range of frequencies and temperatures, ranging from the melting temperature Tm = 372 K down to the glass transition temperature Tg = 292 K.

Results

We emphasized the capacity of these three techniques to give a coherent set of information. We used the coupling-model theory to interpret the dielectric results. It allowed us to identify two relaxation processes (α and β), corresponding to different molecular motions. The temperature evolution of the α-relaxation indicates that fananserine is a fragile glass former, as reflected by the steepness index value, m = 77. The temperature To where the relaxation times diverge was also determined.

Conclusions

The description of the dielectric relaxation data in terms of the Kohlrausch–Williams–Watt relaxation function has shown the existence of an additional low-amplitude relaxation process assigned to the so-called Johari–Goldstein process. Mainly concerned by the primary α-process directly involved in the glass formation, we derived from this analysis the characteristic features of this process and showed that supercooled fananserine is characterized by a strongly non-Arrhenius and nonexponential behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Yoshioka B. C. Hancock G. Zografi (1995) ArticleTitleInhibition of indomethacin crystallization in poly(vinylpyrrolidone) coprecipitates J. Pharm. Sci. 84 983–986 Occurrence Handle1:CAS:528:DyaK2MXmvVegs7s%3D Occurrence Handle7500284

    CAS  PubMed  Google Scholar 

  2. B. C. Hancock S. L. Shamblin G. Zografi (1995) ArticleTitleMolecular mobility of pharmaceutical solids below the glass transition temperature Pharm. Res. 12 799–806 Occurrence Handle10.1023/A:1016292416526 Occurrence Handle1:CAS:528:DyaK2MXmtV2qurg%3D Occurrence Handle7667182

    Article  CAS  PubMed  Google Scholar 

  3. M. D. Ediger C. A. Angell S. R. Nagel (1996) ArticleTitleSupercooled liquids and glasses J. Phys. Chem. 100 13200–13212 Occurrence Handle10.1021/jp953538d Occurrence Handle1:CAS:528:DyaK28Xkt1amsL8%3D

    Article  CAS  Google Scholar 

  4. S. L. Shamblin X. Tang L. Chang B. C. Hancock M. J. Pikal (1999) ArticleTitleCharacterization of the time scales of molecular motion in pharmaceutically important glasses J. Phys. Chem., B. 103 4113–4121 Occurrence Handle10.1021/jp983964+ Occurrence Handle1:CAS:528:DyaK1MXit12ht74%3D

    Article  CAS  Google Scholar 

  5. H. Tanaka (2003) ArticleTitleRelation between thermodynamics and kinetics of glass-forming liquids Phys. Rev. Lett. 90 5701–5704

    Google Scholar 

  6. R. Böhmer K. L. Ngai C. A. Angell D. J. Plazek (1993) ArticleTitleNonexponential relaxations in strong and fragile glass formers J. Chem. Phys. 99 4201–4209 Occurrence Handle10.1063/1.466117

    Article  Google Scholar 

  7. J. C. Phillips (1996) ArticleTitleStretched exponential relaxation in molecular and electronic glasses Rep. Prog. Phys. 59 1133–1207 Occurrence Handle10.1088/0034-4885/59/9/003 Occurrence Handle1:CAS:528:DyaK28XmsFWnt7Y%3D

    Article  CAS  Google Scholar 

  8. J. Giovannini. PhD thesis, University of Rennes 1, number 2648, 2001.

  9. J. Giovannini L. Minassian ParticleTer R. Ceolin S. Toscani M. A. Perrin D. Louer F. Leveiller (2001) ArticleTitleTetramorphism of fananserine: p, T diagram and stability hierarchy from crystal structure determinations and thermodynamic studies J. Phys., IV 11 123–126 Occurrence Handle1:CAS:528:DC%2BD38XhvFKktbg%3D

    CAS  Google Scholar 

  10. A. De Gusseme. PhD thesis, University of Lille 1, number 3353, 2003.

  11. O. Bustin M. Descamps (1999) ArticleTitleSlow structural relaxations of glass-forming Maltitol by modulated DSC calorimetry J. Chem. Phys. 110 10982–10992 Occurrence Handle10.1063/1.478041 Occurrence Handle1:CAS:528:DyaK1MXjtF2iurg%3D

    Article  CAS  Google Scholar 

  12. G. P. Johari (1976) ArticleTitleThe glass transition and the nature of the glassy state Ann. N. Y. Acad. Sci. 279 117–140 Occurrence Handle1:CAS:528:DyaE2sXpvFWksQ%3D%3D

    CAS  Google Scholar 

  13. K. L. Ngai M. Paluch (2004) ArticleTitleClassification of secondary relaxation in glass-formers based on dynamic properties J. Chem. Phys. 120 857–873 Occurrence Handle10.1063/1.1630295 Occurrence Handle1:CAS:528:DC%2BD2cXnsVym Occurrence Handle15267922

    Article  CAS  PubMed  Google Scholar 

  14. K. L. Ngai (1998) ArticleTitleRelation between some secondary relaxations and the α relaxations in glass-forming materials according to the coupling model J. Chem. Phys. 109 6982–6994 Occurrence Handle10.1063/1.477334 Occurrence Handle1:CAS:528:DyaK1cXmsFCqsbY%3D

    Article  CAS  Google Scholar 

  15. K. L. Ngai P. Lunkenheimer C. Leon U. Schneider R. Brand A. Loidl (2001) ArticleTitleNature and properties of the Johari–Goldstein β-relaxation in the equilibrium liquid state of a class of glass-formers J. Chem. Phys. 115 1405–1413 Occurrence Handle10.1063/1.1381054 Occurrence Handle1:CAS:528:DC%2BD3MXltFCls70%3D

    Article  CAS  Google Scholar 

  16. L. Carpentier O. Bustin M. Descamps (2002) ArticleTitleTemperature-modulated differential scanning calorimetry as a specific heat spectroscopy J. Phys., D. Appl. Phys. 35 402–408 Occurrence Handle10.1088/0022-3727/35/4/317 Occurrence Handle1:CAS:528:DC%2BD38XhvFKmsb0%3D

    Article  CAS  Google Scholar 

  17. S. Weyer A. Hensel C. Schick (1997) ArticleTitlePhase angle correction for TMDSC in the glass-transition region Thermochim. Acta 304–305 267–275 Occurrence Handle10.1016/S0040-6031(97)00180-9

    Article  Google Scholar 

  18. L. Carpentier L. Bourgois M. Descamps (2002) ArticleTitleContribution of temperature modulated DSC to the study of the molecular mobility in glass forming pharmaceutical systems J. Therm. Anal. Calorim. 68 727–739 Occurrence Handle10.1023/A:1016080928333 Occurrence Handle1:CAS:528:DC%2BD38XkvFegt74%3D

    Article  CAS  Google Scholar 

  19. L. Carpentier S. Desprez M. Descamps (2003) ArticleTitleFrom strong to fragile glass-forming systems: a temperature modulated differential scanning calorimetry investigation Phase Transit. 76 787–799 Occurrence Handle10.1080/01411590310001603708 Occurrence Handle1:CAS:528:DC%2BD3sXns1Gqs7o%3D

    Article  CAS  Google Scholar 

  20. R. Böhmer E. Sanchez C. A. Angell (1992) ArticleTitleA.c. technique for simultaneous study of local and global linear responses near the glass transition: the case of doped calcium(2+)/potassium(1+)/nitrate J. Phys. Chem. 96 9089–9092 Occurrence Handle10.1021/j100202a001

    Article  Google Scholar 

  21. A. Abragam (1961) Principles of Nuclear Magnetism Oxford University Press Oxford

    Google Scholar 

  22. C. P. Schlichter (1978) Principles of Magnetic Resonance EditionNumber2 Springer Heidelberg

    Google Scholar 

  23. N. Bloembergen E. M. Purcell R. V. Pound (1948) ArticleTitleRelaxation effects in nuclear magnetic resonance absorption Phys. Rev. 73 679–712 Occurrence Handle10.1103/PhysRev.73.679 Occurrence Handle1:CAS:528:DyaH1cXit1Oltw%3D%3D

    Article  CAS  Google Scholar 

  24. R. Böhmer G. Diezemann G. Hinze E. Rössler (2001) ArticleTitleDynamics of supercooled liquids and glassy solids Prog. Nucl. Magn. Reson. Spectrosc. 39 190–267

    Google Scholar 

  25. P. A. Beckmann (1998) ArticleTitleSpectral densities and nuclear spin relaxation in solids Phys. Rep. 171 85–128 Occurrence Handle10.1016/0370-1573(88)90073-7

    Article  Google Scholar 

  26. C. Forte M. Geppi M. Malvaldi V. Mattoli (2004) ArticleTitleDynamics of an amorphous polymer by an improved NMR approach based on the simultaneous analysis of 1H and 13C relaxation times J. Phys. Chem., B. 108 10832–10837 Occurrence Handle10.1021/jp049492i Occurrence Handle1:CAS:528:DC%2BD2cXlt1aku7Y%3D

    Article  CAS  Google Scholar 

  27. F. Stickel E. W. Fischer R. Richert (1996) ArticleTitleDynamics of glass-forming liquids. II. Detailed comparison of dielectric relaxation, dc-conductivity, and viscosity data J. Chem. Phys. 104 2043–2055 Occurrence Handle10.1063/1.470961 Occurrence Handle1:CAS:528:DyaK28XnsV2nsg%3D%3D

    Article  CAS  Google Scholar 

  28. N. Okamoto M. Oguni Y. Sagawa (1997) ArticleTitleGeneration and extinction of a crystal nucleus below the glass transition temperature J. Phys. Condens. Matter 9 9187–9198 Occurrence Handle10.1088/0953-8984/9/43/005 Occurrence Handle1:CAS:528:DyaK2sXnt1arur0%3D

    Article  CAS  Google Scholar 

  29. M. Hatase M. Hayana T. Hikima M. Oguni (2002) ArticleTitleDiscovery of homogeneous-nucleation based crystallization in simple glass-forming liquid of toluene below its glass-transition temperature J. Non-Cryst. Solids 307–310 257–263 Occurrence Handle10.1016/S0022-3093(02)01473-4

    Article  Google Scholar 

Download references

Acknowledgment

We gratefully acknowledge the financial support by the FEDER in the fame of an Interreg III program (Nord-Pas de Calais, Haute Normandie, Kent).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Carpentier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carpentier, L., Decressain, R., De Gusseme, A. et al. Molecular Mobility in Glass Forming Fananserine: A Dielectric, NMR, and TMDSC Investigation. Pharm Res 23, 798–805 (2006). https://doi.org/10.1007/s11095-006-9744-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9744-4

Key Words

Navigation