Skip to main content
Log in

Development of a QSAR Model for Binding of Tripeptides and Tripeptidomimetics to the Human Intestinal Di-/Tripeptide Transporter hPEPT1

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Purpose

The aim of this study was to develop a three-dimensional quantitative structure–activity relationship (QSAR) model for binding of tripeptides and tripeptidomimetics to hPEPT1 based on a series of 25 diverse tripeptides.

Methods

VolSurf descriptors were generated and correlated with binding affinities by multivariate data analysis. The affinities for hPEPT1 of the tripeptides and tripeptidomimetics were determined experimentally by use of Caco-2 cell monolayers.

Results

The K i -values of the 25 tripeptides and tripeptidomimetics ranged from 0.15 to 25 mM and the structural diversity of the compounds was described by VolSurf descriptors. A QSAR model that correlated the VolSurf descriptors of the tripeptides with their experimental binding affinity for hPEPT1 was established.

Conclusion

Structural information on tripeptide properties influencing the binding to hPEPT1 was extracted from the QSAR model. This information may contribute to the drug design process of tripeptides and tripeptidomimetics where hPEPT1 is targeted as an absorptive transporter for improvement of intestinal absorption. To our knowledge, this is the first time a correlation between VolSurf descriptors and binding affinities for hPEPT1 has been reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Ψ:

N- methyl amide bond isostere Ψ [CONCH3]

3D-QSAR:

three-dimensional quantitative structure– activity relationship

CoMSIA:

comparative molecular similarity indices analysis

PCA:

principal component analysis

PLS:

partial least square of latent variables

References

  1. B. Brodin C. U. Nielsen B. Steffansen S. Frokjaer (2002) ArticleTitleTransport of peptidomimetic drugs by the intestinal di/tri-peptide transporter, PepT1 Pharmacol. Toxicol. 90 285–296 Occurrence Handle10.1034/j.1600-0773.2002.900601.x Occurrence Handle1:CAS:528:DC%2BD38Xlt1Wmtbs%3D Occurrence Handle12403049

    Article  CAS  PubMed  Google Scholar 

  2. C. U. Nielsen J. Våbenø R. Andersen B. Brodin B. Steffansen (2005) ArticleTitleRecent advances in therapeutic applications of human peptide transporters Expert Opin. Ther. Pat. 15 153–166 Occurrence Handle10.1517/13543776.15.2.153 Occurrence Handle1:CAS:528:DC%2BD2MXhsFSms70%3D

    Article  CAS  Google Scholar 

  3. B. Bretschneider M. Brandsch R. Neubert (1999) ArticleTitleIntestinal transport of β-lactam antibiotics: analysis of the affinity at the H+/peptide symporter (PEPT1), the uptake into Caco-2 cell monolayers and the transepithelial flux Pharm. Res. 16 55–61 Occurrence Handle10.1023/A:1018814627484 Occurrence Handle1:CAS:528:DyaK1MXmtlGmsQ%3D%3D Occurrence Handle9950279

    Article  CAS  PubMed  Google Scholar 

  4. X. Z. Chen A. Steel M. A. Hediger (2000) ArticleTitleFunctional roles of histidine and tyrosine residues in the H(+)-peptide transporter PepT1 Biochem. Biophys. Res. Commun. 272 726–730 Occurrence Handle10.1006/bbrc.2000.2851 Occurrence Handle1:CAS:528:DC%2BD3cXktVKktLs%3D Occurrence Handle10860823

    Article  CAS  PubMed  Google Scholar 

  5. D. I. Friedman G. L. Amidon (1989) ArticleTitlePassive and carrier-mediated intestinal absorption components of two angiotensin converting enzyme (ACE) inhibitor prodrugs in rats: enalapril and fosinopril Pharm. Res. 6 1043–1047 Occurrence Handle10.1023/A:1015978420797 Occurrence Handle1:CAS:528:DyaK3cXmt1GjtA%3D%3D Occurrence Handle2560181

    Article  CAS  PubMed  Google Scholar 

  6. C. Shu H. Shen U. Hopfer D. E. Smith (2001) ArticleTitleMechanism of intestinal absorption and renal reabsorption of an orally active ACE inhibitor: uptake and transport of fosinopril in cell cultures Drug Metab. Dispos. 29 1307–1315 Occurrence Handle1:CAS:528:DC%2BD3MXntVGquro%3D Occurrence Handle11560874

    CAS  PubMed  Google Scholar 

  7. D. T. Thwaites M. Cavet B. H. Hirst N. L. Simmons (1995) ArticleTitleAngiotensin-converting enzyme (ACE) inhibitor transport in human intestinal epithelial (Caco-2) cells Br. J. Pharmacol. 114 981–986 Occurrence Handle1:CAS:528:DyaK2MXkt1WmsL0%3D Occurrence Handle7780654

    CAS  PubMed  Google Scholar 

  8. P. D. Bailey C. A. Boyd J. R. Bronk I. D. Collier D. Meredith K. M. Morgan C. S. Temple (2000) ArticleTitleHow to make drugs orally active: a substrate template for peptide transporter PepT1 Angew. Chem., Int. Ed. Engl. 39 505–508 Occurrence Handle10.1002/(SICI)1521-3773(20000204)39:3<505::AID-ANIE505>3.0.CO;2-B

    Article  Google Scholar 

  9. A. Biegel S. Gebauer B. Hartrodt M. Brandsch K. Neubert I. Thondorf (2005) ArticleTitleThree-dimensional quantitative structure–activity relationship analyses of β-lactam antibiotics and tripeptides as substrates of the mammalian H(+)/peptide cotransporter PEPT1 J. Med. Chem. 48 4410–4419 Occurrence Handle10.1021/jm048982w Occurrence Handle1:CAS:528:DC%2BD2MXksVertL4%3D Occurrence Handle15974593

    Article  CAS  PubMed  Google Scholar 

  10. S. Gebauer I. Knutter B. Hartrodt M. Brandsch K. Neubert I. Thondorf (2003) ArticleTitleThree-dimensional quantitative structure–activity relationship analyses of peptide substrates of the mammalian H+/peptide cotransporter PEPT1 J. Med. Chem. 46 5725–5734 Occurrence Handle10.1021/jm030976x Occurrence Handle1:CAS:528:DC%2BD3sXovFyiu74%3D Occurrence Handle14667225

    Article  CAS  PubMed  Google Scholar 

  11. J. Li I. J. Hidalgo (1996) ArticleTitleMolecular modeling study of structural requirements for the oligopeptide transporter J. Drug Target. 4 9–17 Occurrence Handle1:CAS:528:DyaK28XksVGjsro%3D Occurrence Handle8798874

    CAS  PubMed  Google Scholar 

  12. P. W. Swaan B. C. Koops E. E. Moret J. J. Tukker (1998) ArticleTitleMapping the binding site of the small intestinal peptide carrier (PepT1) using comparative molecular field analysis Recept. Channels 6 189–200 Occurrence Handle1:CAS:528:DyaK1MXhvVWjtLY%3D Occurrence Handle10100327

    CAS  PubMed  Google Scholar 

  13. M. Brandsch I. Knutter F. H. Leibach (2004) ArticleTitleThe intestinal H+/peptide symporter PEPT1: structure–affinity relationships Eur. J. Pharm. Sci. 21 53–60 Occurrence Handle1:CAS:528:DC%2BD2cXovFWh Occurrence Handle14706811

    CAS  PubMed  Google Scholar 

  14. J. Våbenø C. U. Nielsen B. Steffansen T. Lejon I. Sylte F. S. Jørgensen K. Luthman (2005) ArticleTitleConformational restrictions in ligand binding to the human intestinal di-/tripeptide transporter: implications for design of hPEPT1 targeted prodrugs Bioorg. Med. Chem. 13 1977–1988 Occurrence Handle15727852

    PubMed  Google Scholar 

  15. R. Knorr A. Trzeciak W. Bannwarth D. Gillessen (1989) ArticleTitleNew coupling reagents in peptide chemistry Tetrahedron Lett. 30 1927–1930 Occurrence Handle10.1016/S0040-4039(00)99616-3 Occurrence Handle1:CAS:528:DyaK3cXhtF2nsro%3D

    Article  CAS  Google Scholar 

  16. E. Kaiser R. L. Colescott C. D. Bossinger P. I. Cook (1970) ArticleTitleColor test for detection of free terminal amino groups in the solid-phase synthesis of peptides Anal. Biochem. 34 595–598 Occurrence Handle10.1016/0003-2697(70)90146-6 Occurrence Handle1:CAS:528:DyaE3cXhtVWjur0%3D Occurrence Handle5443684

    Article  CAS  PubMed  Google Scholar 

  17. C. U. Nielsen R. Andersen B. Brodin S. Frokjaer M. E. Taub B. Steffansen (2001) ArticleTitleDipeptide model prodrugs for the intestinal oligopeptide transporter. Affinity for and transport via hPepT1 in the human intestinal Caco-2 cell line J. Control. Release 76 129–138 Occurrence Handle10.1016/S0168-3659(01)00427-8 Occurrence Handle1:CAS:528:DC%2BD3MXmt1Gls74%3D Occurrence Handle11532319

    Article  CAS  PubMed  Google Scholar 

  18. I. Knutter S. Theis B. Hartrodt I. Born M. Brandsch H. Daniel K. Neubert (2001) ArticleTitleA novel inhibitor of the mammalian peptide transporter PEPT1 Biochemistry 40 4454–4458 Occurrence Handle10.1021/bi0026371 Occurrence Handle1:STN:280:DC%2BD3M3itVCksA%3D%3D Occurrence Handle11284702

    Article  CAS  PubMed  Google Scholar 

  19. Y. Cheng W. H. Prusoff (1973) ArticleTitleRelationship between the inhibition constant (KI) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction Biochem. Pharmacol. 22 3099–3108 Occurrence Handle1:CAS:528:DyaE2cXhtVGgs7c%3D Occurrence Handle4202581

    CAS  PubMed  Google Scholar 

  20. G. Cruciani P. Crivori P. A. Carrupt B. Testa (2000) ArticleTitleMolecular fields in quantitative structure–permeation relationships: the VolSurf approach J. Mol. Struct., Theochem 503 17–30 Occurrence Handle10.1016/S0166-1280(99)00360-7 Occurrence Handle1:CAS:528:DC%2BD3cXjsVehur0%3D

    Article  CAS  Google Scholar 

  21. H. Voet Particlevan der (1994) ArticleTitleComparing the predictive accuracy of models using a simple randomization test Chemometr. Intell. Lab. 25 313–323

    Google Scholar 

  22. G. Kottra A. Stamfort H. Daniel (2002) ArticleTitlePEPT1 as a paradigm for membrane carriers that mediate electrogenic bidirectional transport of anionic, cationic, and neutral substrates J. Biol. Chem. 277 32683–32691 Occurrence Handle10.1074/jbc.M204192200 Occurrence Handle1:CAS:528:DC%2BD38Xnt1Smsbc%3D Occurrence Handle12082113

    Article  CAS  PubMed  Google Scholar 

  23. A. Steel S. Nussberger M. F. Romero W. F. Boron C.-A. R. Boyd M. A. Hediger (1997) ArticleTitleStoichiometry and pH dependence of the rabbit proton-dependent oligopeptide transporter PepT1 J. Physiol. 498 563–569 Occurrence Handle1:CAS:528:DyaK2sXhsFeitbw%3D Occurrence Handle9051570

    CAS  PubMed  Google Scholar 

  24. Y. J. Fei Y. Kanai S. Nussberger V. Ganapathy F. H. Leibach M. F. Romero S. K. Singh W. F. Boron M. A. Hediger (1994) ArticleTitleExpression cloning of a mammalian proton-coupled oligopeptide transporter Nature 368 563–566 Occurrence Handle10.1038/368563a0 Occurrence Handle1:CAS:528:DyaK2cXksFCntro%3D Occurrence Handle8139693

    Article  CAS  PubMed  Google Scholar 

  25. J. E. Ladbury (1996) ArticleTitleJust add water! The effect of water on the specificity of protein–ligand binding sites and its potential application to drug design Chem. Biol. 3 973–980 Occurrence Handle1:CAS:528:DyaK2sXmslKrtw%3D%3D Occurrence Handle9000013

    CAS  PubMed  Google Scholar 

  26. J. R. Tame S. H. Sleigh A. J. Wilkinson J. E. Ladbury (1996) ArticleTitleThe role of water in sequence-independent ligand binding by an oligopeptide transporter protein Nat. Struct. Biol. 3 998–1001 Occurrence Handle10.1038/nsb1296-998 Occurrence Handle1:CAS:528:DyaK28XnsVWis70%3D Occurrence Handle8946852

    Article  CAS  PubMed  Google Scholar 

  27. L. Eriksson E. Johansson N. Kettaneh-Wold S. Wold (2001) Multi- and Megavariate Data Analysis; Principles and Applications Umetrics AB Umeå, Sweden

    Google Scholar 

  28. G. Cruciani M. Pastor W. Guba (2000) ArticleTitleVolSurf: a new tool for the pharmacokinetic optimization of lead compounds Eur. J. Pharm. Sci. 11 S29–S39 Occurrence Handle1:CAS:528:DC%2BD3cXntF2gtbo%3D Occurrence Handle11033425

    CAS  PubMed  Google Scholar 

  29. P. Crivori I. Zamora B. Speed C. Orrenius I. Poggesi (2004) ArticleTitleModel based on GRID-derived descriptors for estimating CYP3A4 enzyme stability of potential drug candidates J. Comput. Aided. Mol. Des. 18 155–166 Occurrence Handle10.1023/B:JCAM.0000035184.11906.c2 Occurrence Handle1:CAS:528:DC%2BD2cXlsl2qt78%3D Occurrence Handle15368916

    Article  CAS  PubMed  Google Scholar 

  30. P. Crivori G. Cruciani P. A. Carrupt B. Testa (2000) ArticleTitlePredicting blood–brain barrier permeation from three-dimensional molecular structure J. Med. Chem. 43 2204–2216 Occurrence Handle10.1021/jm990968+ Occurrence Handle1:CAS:528:DC%2BD3cXjtFKhtLk%3D Occurrence Handle10841799

    Article  CAS  PubMed  Google Scholar 

  31. D. M. Matthews (1975) ArticleTitleIntestinal absorption of peptides Physiol. Rev. 55 537–608 Occurrence Handle1:CAS:528:DyaE28XhsV2kug%3D%3D Occurrence Handle1103167

    CAS  PubMed  Google Scholar 

  32. Molecular Discovery Ltd. VolSurf Manual (VolSurf v4.1.3). http://www.moldiscovery.com/soft_volsurf.php. Accessed 10 Nov 2005.

Download references

Acknowledgments

The Danish Medicinal Council supported this work (project grant 22-03-0274). Zealand Pharma A/S financially supported this work via the Drug Research Academy, Danish University of Pharmaceutical Sciences, Copenhagen, Denmark. Partial funding was obtained from the BioSim workpackage 15 funded by the European Commission (BioSim NoE LSH-CT-005137). The HPLC system was cofunded by the Hørslev Foundation. We appreciate the support by Tripos Associates and Gabriele Cruciani regarding the access to Sybyl and VolSurf. The technical assistance of Bettina Dinitzen and Susanne Nørskov Sørensen is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rikke Andersen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersen, R., Jørgensen, F.S., Olsen, L. et al. Development of a QSAR Model for Binding of Tripeptides and Tripeptidomimetics to the Human Intestinal Di-/Tripeptide Transporter hPEPT1. Pharm Res 23, 483–492 (2006). https://doi.org/10.1007/s11095-006-9462-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9462-y

Key Words

Navigation