Skip to main content
Log in

Direct Observation of Single Particle Electrostatic Charging by Atomic Force Microscopy

  • Short Communication
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To show that atomic force microscopy (AFM) can be used to directly study the electrostatic charging and dissipation of single pharmaceutical particles.

Materials and Methods

Particles of lactose attached to AFM cantilevers were charged on a glass surface at a relative humidity (RH) of 0.1%. By recording force-distance curves, we use a measurement of the long range electrostatic interaction to compare the generation of charge by contact charging and tribocharging and to study the effect of RH on charge dissipation.

Results

As expected, tribocharging by scanning the particle across the glass surface generates considerably more charge than repeated local contacts. Increasing the RH from 0.1 to 5% over a period of 37 min dissipates the tribo-generated electrostatic charge.

Conclusions

Using a combination of the abilities of AFM to scan in contact mode and record force-distance curves, we have shown a novel method to study electrostatic charging of particles. By measuring the length of the long range electrostatic interaction, we are able to compare different mechanisms of generating charge and to study the effect of RH on charge dissipation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

AFM:

atomic force microscopy

DPI:

dry powder inhaler

Min:

minutes

RH:

relative humidity

References

  1. M. J. Bunker, C. J. Roberts, and M. C. Davies. Towards screening of inhalation formulations: measuring interactions with atomic force microscopy. Expert Opin. Drug Deliv. 2:613–624 (2005).

    Article  PubMed  CAS  Google Scholar 

  2. C. J. Roberts. What can we learn from atomic force microscopy adhesion measurements with single drug particles? Eur. J. Pharm. Sci. 25:153–157 (2005).

    Article  CAS  Google Scholar 

  3. J. K. Eve, N. Patel, S. Y. Luk, S. J. Ebbens, and C. J. Roberts. A study of single drug particle adhesion interactions using atomic force microscopy. Int. J. Pharm. 238:17–27 (2002).

    Article  PubMed  CAS  Google Scholar 

  4. P. M. Young, R. Price, M. J. Tobyn, M. Buttrum, and F. Dey. The influence of relative humidity on the cohesion properties of micronised drugs used in inhalation therapy. J. Pharm. Sci. 93:753–761 (2003).

    Article  CAS  Google Scholar 

  5. P. R. Byron, J. Peart, and J. N. Staniforth. Aerosol electrostatics 1: properties of fine powders before and after aerosolization by dry powder inhalers. Pharm. Res. 14:698–705 (1997).

    Article  PubMed  CAS  Google Scholar 

  6. M. Murtomaa, V. Mellin, P. Harjunen, T. Lankinen, E. Laine, and V.-P. Lehto. Effect of particle morphology on the triboelectrification in dry powder inhalers. Int. J. Pharm. 282:107–114 (2004).

    Article  PubMed  CAS  Google Scholar 

  7. C. U. Yurteri, M. K. Mazumder, N. Grable, G. Ahuja, S. Trigwell, A. S. Biris, R. Sharma, and R. A. Sims. Electrostatic effects on dispersion, transport and deposition of fine pharmaceutical powders: development of an experimental method for quantitative analysis. Part. Sci. Technol. 20:59–79 (2002).

    Article  CAS  Google Scholar 

  8. M. K. Mazumder, R. A. Sims, A. S. Biris, P. K. Srirama, D. Saini, C. U. Yurteri, S. Trigwell, S. De, and R. Sharma. Twenty-first century research needs in electrostatic processes applied to industry and medicine. Chem. Eng. Sci. 61:2192–2211 (2006).

    Article  CAS  Google Scholar 

  9. H. Mizes, M. Ott, E. Eklund, and D. Hays. Small particle adhesion: measurement and control. Colloids Surf., A 165:11–23 (2000).

    Article  CAS  Google Scholar 

  10. H. Zhou, M. Gotzinger, and W. Peukert. The influence of particle charge and roughness on particle-substrate adhesion. Powder Technol. 135–136:82–91 (2003).

    Article  CAS  Google Scholar 

  11. B. Gady, R. Reifenbereger, D. S. Rimai, and L. P. DeMejo. Contact electrification and the interaction force between a micrometer-size polystyrene sphere and a graphite surface. Langmuir 13:2533–2537 (1997).

    Article  CAS  Google Scholar 

  12. B. Gady, D. Schleef, R. Reifenbereger, D. S. Rimai, and L. P. Demejo. Identification of electrostatic and van der Waals interaction forces between a micrometer-size sphere and a flat substrate. Phys. Rev. B. 53:8065–8070 (1996).

    Article  CAS  Google Scholar 

  13. H.-J. Butt, B. Cappella, and M. Kappl. Force measurements with the atomic force microscope: technique, interpretation and applications. Surf. Sci. Rep. 59:1–152 (2005).

    Article  CAS  Google Scholar 

  14. E. Meyer, R. M. Overney, K. Dransfeld, and T. Gyalog. Nanoscience: Friction and Rheology on the Nanometer Scale. World Scientific, London, 1998.

    Google Scholar 

  15. T. Matsuyama and H. Yamamoto. The electrostatic force between a charged dielectric particle and a conducting plane. KONA 16:223–228 (1998).

    Google Scholar 

  16. J. N. Staniforth and J. E. Rees. Electrostatic charge interactions in ordered powder mixes. J. Pharm. Pharmacol. 34:69–76 (1982).

    PubMed  CAS  Google Scholar 

  17. P. A. Carter, G. Rowley, E. J. Fletcher, and E. A. Hill. An experimental investigation of triboelectrification in cohesive and non-cohesive pharmaceutical powders. Drug Dev. Ind. Pharm. 18:1505–1526 (1992).

    CAS  Google Scholar 

  18. M. Murtomaa and E. Laine. Electrostatic measurements on lactose-glucose mixtures. J. Elect. 48:155–162 (2000).

    Article  CAS  Google Scholar 

  19. J. Eilbeck, G. Rowley, P. A. Carter, and E. J. Fletcher. Effect of material construction of pharmaceutical processing equipment and drug delivery devices on the triboelectrification of size-fractioned lactose. Pharm. Pharmacol. Commun. 5:429–433 (1999).

    CAS  Google Scholar 

  20. M. Murtomaa, K. Ojanen, E. Laine, and J. Poutanen. Effect of detergent on powder triboelectrification. Eur. J. Pharm. Sci. 17:195–199 (2002).

    Article  PubMed  CAS  Google Scholar 

  21. G. Rowley. Quantifying electrostatic interactions in pharmaceutical solid systems. Int. J. Pharm. 227:47–55 (2001).

    Article  PubMed  CAS  Google Scholar 

  22. P. A. Carter, O. E. Cassidy, G. Rowley, and D. R. Merrifield. Triboelectrification of fractionated crystalline and spray-dried lactose. Pharm. Pharmacol. Commun. 4:111–115 (1998).

    CAS  Google Scholar 

  23. H.-K. Chan. Dry powder aerosol drug delivery-opportunities for colloid and surface scientists. Colloids Surf., A 284–285:50–55 (2006).

    Article  CAS  Google Scholar 

  24. P. Kulvanich and P. J. Stewart. Influence of relative humidity on the adhesive properties of a model interactive system. J. Pharm. Pharmacol. 40:453–458 (1988).

    PubMed  CAS  Google Scholar 

  25. X. M. Zeng, G. P. Martin, and C. Marriott. Particulate Interactions in Dry Powder Formulations for Inhalation. Taylor & Francis, London, 2001.

    Google Scholar 

  26. T. Nguyen and S. Nieh. The role of water vapour in the charge elimination process for flowing powders. J. Elect. 22:213–227 (1989).

    Article  CAS  Google Scholar 

  27. J. Eilbeck, G. Rowley, P. A. Carter, and E. J. Fletcher. Effect of contamination of pharmaceutical equipment on powder triboelectrification. Int. J. Pharm. 195:7–11 (2000).

    Article  PubMed  CAS  Google Scholar 

  28. J. L. Hutter and J. Bechhoefer. Calibration of atomic-force microscope tips. Rev. Sci. Instrum. 64:1868–1873 (1993).

    Article  CAS  Google Scholar 

  29. F. K. Dey, J. A. S. Cleaver, and P. A. Zhdan. Atomic force microscopy study of adsorbed moisture on lactose particles. Adv. Powder Technol. 11:401–413 (2000).

    Article  CAS  Google Scholar 

  30. L. B. Schein and W. S. Czarnecki. Electrostatic proximity force, toner adhesion, and atomic force microscopy of insulating particles. J. Elect. 63:699–704 (2005).

    Article  CAS  Google Scholar 

  31. N. Sun and J. Y. Walz. A model for calculating electrostatic interactions between colloidal particles of arbitary surface topology. J. Colloid Interface Sci. 234:90–105 (2000).

    Article  CAS  Google Scholar 

  32. P. Girard. Electrostatic force microscopy: principles and some applications to semiconductors. Nanotechnology 12:485–490 (2001).

    Article  Google Scholar 

  33. D. R. Lide (ed.). CRC Handbook of Chemistry and Physics, 74th ed., CRC, Boca Raton, 1993.

  34. J. Lowell. Contact electrification of silica and soda glass. J. Phys. D: Appl. Phys. 23:1082–1091 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

MJB acknowledges GSK and EPSRC for funding of studentship. MJB would like to thank Xinyong Chen for continuing help and support with AFM instrumentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clive J. Roberts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bunker, M.J., Davies, M.C., James, M.B. et al. Direct Observation of Single Particle Electrostatic Charging by Atomic Force Microscopy. Pharm Res 24, 1165–1169 (2007). https://doi.org/10.1007/s11095-006-9230-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9230-z

Key words

Navigation