Skip to main content

Advertisement

Log in

Mechanistic Approaches to Volume of Distribution Predictions: Understanding the Processes

Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To use recently developed mechanistic equations to predict tissue-to-plasma water partition coefficients (Kpus), apply these predictions to whole body unbound volume of distribution at steady state (Vuss) determinations, and explain the differences in the extent of drug distribution both within and across the various compound classes.

Materials and Methods

Vuss values were predicted for 92 structurally diverse compounds in rats and 140 in humans by two approaches. The first approach incorporated Kpu values predicted for 13 tissues whereas the second was restricted to muscle.

Results

The prediction accuracy was good for both approaches in rats and humans, with 64–78% and 82–92% of the predicted Vuss values agreeing with in vivo data to within factors of ±2 and 3, respectively.

Conclusions

Generic distribution processes were identified as lipid partitioning and dissolution where the former is higher for lipophilic unionised drugs. In addition, electrostatic interactions with acidic phospholipids can predominate for ionised bases when affinities (reflected by binding to constituents within blood) are high. For acidic drugs albumin binding dominates when plasma protein binding is high. This ability to explain drug distribution and link it to physicochemical properties can help guide the compound selection process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Rowland and T. N. Tozer. Clinical pharmacokinetics: concepts and applications, Chapter 19, Williams & Wilkins, Baltimore, London, 1995.

  2. R. A. Herman and P. Veng-Pedersen. Quantitative structure-pharmacokinetic relationships for systemic drug distribution kinetics not confined to a congeneric series. J. Pharm. Sci. 83:423–428 (1994).

    PubMed  CAS  Google Scholar 

  3. Y. Sawada, M. Hanano, Y. Sugiyama, H. Harashima, and T. Iga. Prediction of the volumes of distribution of basic drugs in humans based on data from animals. J. Pharmacokinet. Biopharm. 12:587–596 (1984).

    PubMed  CAS  Google Scholar 

  4. Y. Sawada, M. Hanano, Y. Sugiyama, and T. Iga. Prediction of the disposition of nine weakly acidic and six weakly basic drugs in humans from pharmacokinetic parameters in rats. J. Pharmacokinet. Biopharm. 13:477–492 (1985).

    PubMed  CAS  Google Scholar 

  5. F. Lombardo, R. S. Obach, M. Y. Shalaeva, and F. Gao. Prediction of volume of distribution values in humans for neutral and basic drugs using physicochemical measurements and plasma protein binding data. J. Med. Chem. 45:2867–2876 (2002).

    PubMed  CAS  Google Scholar 

  6. F. Lombardo, R. S. Obach, M. Y. Shalaeva, and F. Gao. Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out statistics. J. Med. Chem. 47:1242–1250 (2004).

    PubMed  CAS  Google Scholar 

  7. F. Lombardo, R. S. Obach, F. M. Dicapua, G. A. Bakken, J. Lu, D. M. Potter, F. Gao, M. D. Miller, and Y. Zhang. A hybrid mixture discriminant analysis-random forest computational model for the prediction of volume of distribution of drugs in human. J. Med. Chem. 49:2262–2267 (2006).

    PubMed  CAS  Google Scholar 

  8. K. W. Ward and B. R. Smith. A comprehensive quantitative and qualitative evaluation of extrapolation of intravenous pharmacokinetic parameters from rat, dog, and monkey to humans. II. Volume of distribution and mean residence time. Drug Metab. Dispos. 32:612–619 (2004).

    PubMed  CAS  Google Scholar 

  9. N. R. Davis and W. W. Mapleson. A physiological model for the distribution of injected agents, with special reference to pethidine. Br. J. Anaesth. 70:248–258 (1993).

    PubMed  CAS  Google Scholar 

  10. P. Poulin, K. Schoenlein, and F. P. Theil. Prediction of adipose tissue : plasma partition coefficients for structurally unrelated drugs. J. Pharm. Sci. 90:436–447 (2001).

    PubMed  CAS  Google Scholar 

  11. P. Poulin and F. P. Theil. A priori prediction of tissue:plasma partition coefficients of drugs to facilitate the use of physiologically-based pharmacokinetic models in drug discovery. J. Pharm. Sci. 89:16–35 (2000).

    PubMed  CAS  Google Scholar 

  12. P. Poulin and F. P. Theil. Prediction of pharmacokinetics prior to in vivo studies. 1. Mechanism-based prediction of volume of distribution. J. Pharm. Sci. 91:129–156 (2002).

    PubMed  CAS  Google Scholar 

  13. T. Rodgers, D. Leahy, and M. Rowland. Physiologically based pharmacokinetic modeling 1: predicting the tissue distribution of moderate-to-strong bases. J. Pharm. Sci. 94:1259–1276 (2005).

    PubMed  CAS  Google Scholar 

  14. T. Rodgers and M. Rowland. Physiologically based pharmacokinetic modelling 2: predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions. J. Pharm. Sci. 95:1238–1257 (2006).

    PubMed  CAS  Google Scholar 

  15. M. Rowland and T. N. Tozer. Clinical pharmacokinetics: concepts and applications. Williams & Wilkins, Baltimore, London, 502–503 (1995).

    Google Scholar 

  16. T. Terasaki, T. Iga, Y. Sugiyama, and M. Hanano. Experimental evidence of characteristic tissue distribution of adriamycin. Tissue DNA concentration as a determinant. J. Pharm. Pharmacol. 34:597–600 (1982).

    PubMed  CAS  Google Scholar 

  17. T. Terasaki, T. Iga, Y. Sugiyama, and M. Hanano. Pharmacokinetic study on the mechanism of tissue distribution of doxorubicin: interorgan and interspecies variation of tissue-to-plasma partition coefficients in rats, rabbits, and guinea pigs. J. Pharm. Sci. 73:1359–1363 (1984).

    PubMed  CAS  Google Scholar 

  18. P. H. Hinderling. Red blood cells: a neglected compartment in pharmacokinetics and pharmacodynamics. Pharmacol. Rev. 49:279–295 (1997).

    PubMed  CAS  Google Scholar 

  19. H. L. Fleuren, T. A. Thien, C. P. Verwey-Van Wissen, and J. M. van Rossum. Absolute bioavailability of chlorthalidone in man: a cross-over study after intravenous and oral administration. Eur. J. Clin. Pharmacol. 15:35–50 (1979).

    PubMed  CAS  Google Scholar 

  20. H. M. Jones, N. Parrott, K. Jorga, and T. Lave. A novel strategy for physiologically based predictions of human pharmacokinetics. Clin. Pharmacokinet. 45:511–542 (2006).

    PubMed  CAS  Google Scholar 

  21. F. L. Tse, D. F. Nickerson, and W. S. Yardley. Binding of fluvastatin to blood cells and plasma proteins. J. Pharm. Sci. 82:942–947 (1993).

    PubMed  CAS  Google Scholar 

  22. I. Gueorguieva, I. A. Nestorov, S. Murby, S. Gisbert, B. Collins, K. Dickens, J. Duffy, Z. Hussain, and M. Rowland. Development of a whole body physiologically based model to characterise the pharmacokinetics of benzodiazepines. 1: Estimation of rat tissue-plasma partition ratios. J. Pharmacokinet. Pharmacodyn. 31:269–298 (2004).

    PubMed  CAS  Google Scholar 

  23. S. Bjorkman. Prediction of the volume of distribution of a drug: which tissue-plasma partition coefficients are needed? J. Pharm. Pharmacol. 54:1237–1245 (2002).

    PubMed  CAS  Google Scholar 

  24. G. Schuhmann, B. Fichtl, and H. Kurz. Prediction of drug distribution in vivo on the basis of in vitro binding data. Biopharm. Drug Dispos. 8:73–86 (1987).

    PubMed  CAS  Google Scholar 

  25. P. Ballard, D. E. Leahy, and M. Rowland. Prediction of in vivo tissue distribution from in vitro data. 3. Correlation between in vitro and in vivo tissue distribution of a homologous series of nine 5-n-alkyl-5-ethyl barbituric acids. Pharm. Res. 20:864–872 (2003).

    PubMed  CAS  Google Scholar 

  26. SPARC On-Line Calculator. http://ibmlc2.chem.uga.edu/sparc/. 29-3-2006.

  27. Syracuse Research Corporation: KOWWIN Experimental Database. http://www.syrres.com/esc/est_kowdemo.htm. 29-3-2006. 29-3-2006.

  28. Interactive Analysis. http://www.logp.com/. 29-3-2006.

  29. K. Yamazaki and M. Kanaoka. Computational prediction of the plasma protein-binding percent of diverse pharmaceutical compounds. J. Pharm. Sci. 93:1480–1494 (2004).

    PubMed  CAS  Google Scholar 

  30. P. H. Hinderling, O. Schmidlin, and J. K. Seydel. Quantitative relationships between structure and pharmacokinetics of beta-adrenoceptor blocking-agents in man. J. Pharmacokinet. Biopharm. 12:263–287 (1984).

    PubMed  CAS  Google Scholar 

  31. R. Grimaldi, E. Perucca, G. Ruberto, C. Gelmi, F. Trimarchi, M. Hollmann, and A. Crema. Pharmacokinetic and pharmacodynamic studies following the intravenous and oral administration of the antiparkinsonian drug biperiden to normal subjects. Eur. J. Clin. Pharmacol. 29:735–737 (1986).

    PubMed  CAS  Google Scholar 

  32. A. G. Burm, A. G. de Boer, J. W. Van Kleef, N. P. Vermeulen, L. G. de Leede, J. Spierdijk, and D. D. Breimer. Pharmacokinetics of lidocaine and bupivacaine and stable isotope labelled analogues: a study in healthy volunteers. Biopharm. Drug Dispos. 9:85–95 (1988).

    PubMed  CAS  Google Scholar 

  33. G. T. Tucker and L. E. Mather. Clinical pharmacokinetics of local anaesthetics. Clin. Pharmacokinet. 4:241–278 (1979).

    Article  PubMed  CAS  Google Scholar 

  34. M. E. von, K. Reiff, and G. Neugebauer. Pharmacokinetics and bioavailability of carvedilol, a vasodilating beta-blocker. Eur. J. Clin. Pharmacol. 33:511–513 (1987).

    Google Scholar 

  35. J. H. Yan, J. W. Hubbard, G. McKay, E. D. Korchinski, and K. K. Midha. Absolute bioavailability and stereoselective pharmacokinetics of doxepin. Xenobiotica 32:615–623 (2002).

    PubMed  CAS  Google Scholar 

  36. C. S. Lee, D. C. Brater, J. G. Gambertoglio, and L. Z. Benet. Disposition kinetics of ethambutol in man. J. Pharmacokinet. Biopharm. 8:335–346 (1980).

    PubMed  CAS  Google Scholar 

  37. W. J. Tilstone, H. Dargie, E. N. Dargie, H. G. Morgan, and A. C. Kennedy. Pharmacokinetics of metolazone in normal subjects and in patients with cardiac or renal failure. Clin. Pharmacol. Ther. 16:322–329 (1974).

    PubMed  CAS  Google Scholar 

  38. M. Guerret, G. Cheymol, M. Hubert, C. Julien-Larose, and D. Lavene. Simultaneous study of the pharmacokinetics of intravenous and oral nicardipine using a stable isotope. Eur. J. Clin. Pharmacol. 37:381–385 (1989).

    PubMed  CAS  Google Scholar 

  39. B. Hoener and S. E. Patterson. Nitrofurantoin disposition. Clin. Pharmacol. Ther. 29:808–816 (1981).

    Article  PubMed  CAS  Google Scholar 

  40. F. Roila and F. A. Del. Ondansetron clinical pharmacokinetics. Clin Pharmacokinet. 29:95–109 (1995).

    PubMed  CAS  Google Scholar 

  41. W. D. Mason and N. Winer. Pharmacokinetics of oxprenolol in normal subjects. Clin. Pharmacol. Ther. 20:401–412 (1976).

    PubMed  CAS  Google Scholar 

  42. J. Heykants, P. A. Van, R. Woestenborghs, S. Gould, and J. Mills. Pharmacokinetics of ketanserin and its metabolite ketanserin-ol in man after intravenous, intramuscular and oral administration. Eur. J. Clin. Pharmacol. 31:343–350 (1986).

    PubMed  CAS  Google Scholar 

  43. A. C. Moffat, M. D. Osselton, and B. Widdop. Clarke’s analysis of drugs and poisons. Pharmaceutical, London, 2004.

    Google Scholar 

  44. L. S. Goodman, A. Gilman, L. L. Brunton, J. S. Lazo, and K. L. Parker. Goodman & Gilman’s the pharmacological basis of therapeutics. McGraw-Hill, New York, 2005.

    Google Scholar 

  45. D. B. Jack. Handbook of clinical pharmacokinetic data. Macmillan, Basingstoke, Hants, England, 1992.

    Google Scholar 

  46. R. S. Obach. Prediction of human clearance of twenty-nine drugs from hepatic microsomal intrinsic clearance data: an examination of in vitro half-life approach and nonspecific binding to microsomes. Drug Metab. Dispos. 27:1350–1359 (1999).

    PubMed  CAS  Google Scholar 

  47. E. Nakashima, K. Yokogawa, F. Ichimura, K. Kurata, H. Kido, N. Yamaguchi, and T. Yamana. A physiologically based pharmacokinetic model for biperiden in animals and its extrapolation to humans. Chem. Pharm. Bull. (Tokyo). 35:718–725 (1987).

    CAS  Google Scholar 

  48. T. Iwatsubo, N. Hirota, T. Ooie, H. Suzuki, N. Shimada, K. Chiba, T. Ishizaki, C. E. Green, C. A. Tyson, and Y. Sugiyama. Prediction of in vivo drug metabolism in the human liver from in vitro metabolism data. Pharmacol. Ther. 73:147–171 (1997).

    PubMed  CAS  Google Scholar 

  49. Y. Shibata, H. Takahashi, M. Chiba, and Y. Ishii. Prediction of hepatic clearance and availability by cryopreserved human hepatocytes: an application of serum incubation method. Drug Metab. Dispos. 30:892–896 (2002).

    PubMed  CAS  Google Scholar 

  50. Y. Naritomi, S. Terashita, S. Kimura, A. Suzuki, A. Kagayama, and Y. Sugiyama. Prediction of human hepatic clearance from in vivo animal experiments and in vitro metabolic studies with liver microsomes from animals and humans. Drug Metab. Dispos. 29:1316–1324 (2001).

    PubMed  CAS  Google Scholar 

  51. H. Komura and M. Iwaki. Nonlinear pharmacokinetics of propafenone in rats and humans: application of a substrate depletion assay using hepatocytes for assessment of nonlinearity. Drug Metab. Dispos. 33:726–732 (2005).

    PubMed  CAS  Google Scholar 

  52. A. Somogyi, A. McLean, and B. Heinzow. Cimetidine-procainamide pharmacokinetic interaction in man: evidence of competition for tubular secretion of basic drugs. Eur. J. Clin. Pharmacol. 25:339–345 (1983).

    PubMed  CAS  Google Scholar 

  53. J. P. Dubois, W. Kung, W. Theobald, and B. Wirz. Measurement of clomipramine, N-desmethyl-clomipramine, imipramine, and dehydroimipramine in biological fluids by selective ion monitoring, and pharmacokinetics of clomipramine. Clin. Chem. 22:892–897 (1976).

    PubMed  CAS  Google Scholar 

  54. National Highway Traffic Safety Administration: Drugs and Human Performance Fact Sheets. http://www.nhtsa.dot.gov/people/injury/research/job185drugs/technical-page.htm. 29-3-2006.

  55. E. A. Taylor and P. Turner. The distribution of propranolol, pindolol and atenolol between human erythrocytes and plasma. Br. J. Clin. Pharmacol. 12:543–548 (1981).

    PubMed  CAS  Google Scholar 

  56. G. J. Muirhead, D. J. Rance, D. K. Walker, and P. Wastall. Comparative human pharmacokinetics and metabolism of single-dose oral and intravenous sildenafil. Br. J. Clin. Pharmacol. 53(Suppl 1):13S–20S (2002).

    PubMed  CAS  Google Scholar 

  57. R. P. Austin, P. Barton, S. L. Cockroft, M. C. Wenlock, and R. J. Riley. The influence of nonspecific microsomal binding on apparent intrinsic clearance, and its prediction from physicochemical properties. Drug Metab. Dispos. 30:1497–1503 (2002).

    PubMed  CAS  Google Scholar 

  58. R. P. Austin, P. Barton, S. Mohmed, and R. J. Riley. The binding of drugs to hepatocytes and its relationship to physicochemical properties. Drug Metab. Dispos. 33:419–425 (2005).

    PubMed  CAS  Google Scholar 

  59. Application Note: Partition Coefficient (LogD). http://www.cerep.fr/Cerep/Users/pages/Downloads/Documents/Marketing/Pharmacology%20&%20ADME/Application%20notes/partitioncoefficient.pdf. 29-3-2006.

  60. E.A. Kolovanov and A.A. Petrauskas. Re-evaluation of logP data for 22 drugs and comparison of 6 calculation methods. http://www.acdlabs.com/publish/ac_logp.html. 29-3-2006.

  61. Y. Zhao, J. Jona, D. T. Chow, H. Rong, D. Semin, X. Xia, R. Zanon, C. Spancake, and E. Maliski. High-throughput logP measurement using parallel liquid chromatography/ultraviolet/mass spectrometry and sample-pooling. Rapid Commun. Mass Spectrom. 16:1548–1555 (2002).

    PubMed  CAS  Google Scholar 

  62. P. D. Worboys, A. Bradbury, and J. B. Houston. Kinetics of drug metabolism in rat liver slices. III. Relationship between metabolic clearance and slice uptake rate. Drug Metab. Dispos. 25:460–467 (1997).

    PubMed  CAS  Google Scholar 

  63. B. N. Singh. A quantitative approach to probe the dependence and correlation of food-effect with aqueous solubility, dose/solubility ratio, and partition coefficient (Log P) for orally active drugs administered as immediate-release formulations. Drug Dev. Res. 65:55–75 (2005).

    CAS  Google Scholar 

  64. I. Mahmood and C. Sahajwalla. Clinical pharmacokinetics and pharmacodynamics of buspirone, an anxiolytic drug. Clin. Pharmacokinet. 36:277–287 (1999).

    PubMed  CAS  Google Scholar 

  65. C. E. Lin, W. S. Liao, K. H. Chen, and W. Y. Lin. Influence of pH on electrophoretic behavior of phenothiazines and determination of pKa values by capillary zone electrophoresis. Electrophoresis. 24:3154–3159 (2003).

    PubMed  CAS  Google Scholar 

  66. W. Sorasuchart, J. Wardrop, and J. W. Ayres. Drug release from spray layered and coated drug-containing beads: effects of pH and comparison of different dissolution methods. Drug Dev. Ind. Pharm. 25:1093–1098 (1999).

    PubMed  CAS  Google Scholar 

  67. T. Rodgers, D. Leahy, and M. Rowland. Tissue distribution of basic drugs: accounting for enantiomeric, compound and regional differences amongst beta-blocking drugs in rat. J. Pharm. Sci. 94:1237–1248 (2005).

    PubMed  CAS  Google Scholar 

  68. M. Fujimaki. Stereoselective disposition and tissue distribution of carvedilol enantiomers in rats. Chirality 4, 148–154 (1992).

    PubMed  CAS  Google Scholar 

  69. O. Nagata, M. Murata, H. Kato, T. Terasaki, H. Sato, and A. Tsuji. Physiological pharmacokinetics of a new muscle-relaxant, inaperisone, combined with its pharmacological effect on blood flow rate. Drug Metab. Dispos. 18:902–910 (1990).

    PubMed  CAS  Google Scholar 

  70. N. Yata, T. Toyoda, T. Murakami, A. Nishiura, and Y. Higashi. Phosphatidylserine as a determinant for the tissue distribution of weakly basic drugs in rats. Pharm. Res. 7:1019–1025 (1990).

    PubMed  CAS  Google Scholar 

  71. S. Y. Yu, H. C. Chung, E. J. Kim, S. H. Kim, I. Lee, S. G. Kim, and M. G. Lee. Effects of acute renal failure induced by uranyl nitrate on the pharmacokinetics of intravenous theophylline in rats: the role of CYP2E1 induction in 1,3-dimethyluric acid formation. J. Pharm. Pharmacol. 54:1687–1692 (2002).

    PubMed  CAS  Google Scholar 

  72. M. Telting-Diaz, D. O. Scott, and C. E. Lunte. Intravenous microdialysis sampling in awake, freely-moving rats. Anal. Chem. 64:806–810 (1992).

    PubMed  CAS  Google Scholar 

  73. E. Okezaki, T. Terasaki, M. Nakamura, O. Nagata, H. Kato, and A. Tsuji. Structure-tissue distribution relationship based on physiological pharmacokinetics for NY-198, a new antimicrobial agent, and the related pyridonecarboxylic acids. Drug Metab. Dispos. 16:865–874 (1988).

    PubMed  CAS  Google Scholar 

  74. H. Komura and M. Iwaki. Pharmacokinetics and metabolism of metoprolol and propranolol in the female DA and female Wistar rat: the female DA rat is not always an animal model for poor metabolizers of CYP2D6. J. Pharm. Sci. 94:397–408 (2005).

    PubMed  CAS  Google Scholar 

  75. T. D. Bjornsson and C. Mahony. Clinical pharmacokinetics of dipyridamole. Thromb Res Suppl. 4:93–104 (1983).

    PubMed  CAS  Google Scholar 

  76. T. Takabatake, H. Ohta, M. Maekawa, Y. Yamamoto, Y. Ishida, H. Hara, S. Nakamura, Y. Ushiogi, M. Kawabata, and N. Hashimoto. Pharmacokinetics of famotidine, a new H2-receptor antagonist, in relation to renal function. Eur. J. Clin. Pharmacol. 28:327–331 (1985).

    PubMed  CAS  Google Scholar 

  77. U. Busch, G. Heinzel, and H. Narjes. The effect of cholestyramine on the pharmacokinetics of meloxicam, a new non-steroidal anti-inflammatory drug (NSAID), in man. Eur. J. Clin. Pharmacol. 48:269–272 (1995).

    PubMed  CAS  Google Scholar 

  78. N. A. Von, H. J. Huber, and F. Stanislaus. Pharmacokinetics of nilvadipine. J. Cardiovasc. Pharmacol. 20(Suppl 6):S22–S29 (1992).

    Google Scholar 

  79. H. C. Rawden, D. J. Carlile, A. Tindall, D. Hallifax, A. Galetin, K. Ito, and J. B. Houston. Microsomal prediction of in vivo clearance and associated interindividual variability of six benzodiazepines in humans. Xenobiotica 35:603–625 (2005).

    PubMed  CAS  Google Scholar 

  80. N. Blanchard, E. Alexandre, C. Abadie, T. Lave, B. Heyd, G. Mantion, D. Jaeck, L. Richert, and P. Coassolo. Comparison of clearance predictions using primary cultures and suspensions of human hepatocytes. Xenobiotica 35:1–15 (2005).

    PubMed  CAS  Google Scholar 

  81. M. S. Islam and M. M. Narurkar. Solubility, stability and ionization behaviour of famotidine. J. Pharm. Pharmacol. 45:682–686 (1993).

    PubMed  CAS  Google Scholar 

  82. L. Granero, J. Chesa-Jimenez, F. Torres-Molina, and J. E. Peris. Distribution of ceftazidime in rat tissues. Biopharm. Drug Dispos. 19:473–478 (1998).

    PubMed  CAS  Google Scholar 

  83. L. F. Prescott. Kinetics and metabolism of paracetamol and phenacetin. Br. J. Clin. Pharmacol. 10(Suppl 2):291S–298S (1980).

    PubMed  Google Scholar 

  84. L. Borgstrom, B. Kagedal, and O. Paulsen. Pharmacokinetics of N-acetylcysteine in man. Eur. J. Clin. Pharmacol. 31:217–222 (1986).

    PubMed  CAS  Google Scholar 

  85. H. S. Lau, M. L. Hyneck, R. R. Berardi, R. D. Swartz, and D. E. Smith. Kinetics, dynamics, and bioavailability of bumetanide in healthy subjects and patients with chronic renal failure. Clin. Pharmacol. Ther. 39:635–645 (1986).

    Article  PubMed  CAS  Google Scholar 

  86. M. E. Klepser, M. N. Marangos, K. B. Patel, D. P. Nicolau, R. Quintiliani, and C. H. Nightingale. Clinical pharmacokinetics of newer cephalosporins. Clin. Pharmacokinet. 28:361–384 (1995).

    PubMed  CAS  Google Scholar 

  87. W. Muck. Clinical pharmacokinetics of cerivastatin. Clin. Pharmacokinet. 39:99–116 (2000).

    PubMed  CAS  Google Scholar 

  88. A. Rubin, B. E. Rodda, P. Warrick, A. S. Ridolfo, and C. M. Gruber, Jr. Physiological disposition of fenoprofen in man. II. Plasma and urine pharmacokinetics after oral and intravenous administration. J. Pharm. Sci. 61:739–745 (1972).

    PubMed  CAS  Google Scholar 

  89. C. D. Scripture and J. A. Pieper. Clinical pharmacokinetics of fluvastatin. Clin. Pharmacokinet. 40:263–281 (2001).

    PubMed  CAS  Google Scholar 

  90. D. E. Smith, E. T. Lin, and L. Z. Benet. Absorption and disposition of furosemide in healthy volunteers, measured with a metabolite-specific assay. Drug Metab. Dispos. 8:337–342 (1980).

    PubMed  CAS  Google Scholar 

  91. H. Cheng, J. D. Rogers, J. L. Demetriades, S. D. Holland, J. R. Seibold, and E. Depuy. Pharmacokinetics and bioinversion of ibuprofen enantiomers in humans. Pharm. Res. 11:824–830 (1994).

    PubMed  CAS  Google Scholar 

  92. L. Helleberg. Clinical Pharmacokinetics of indomethacin. Clin. Pharmacokinet. 6:245–258 (1981).

    PubMed  CAS  Google Scholar 

  93. N. Y. Le, V. C. de, M. Pinaud, J. M. Bernard, J. P. Fraboul, A. Athouel, M. Ribeyrol, N. Beneroso, and C. Larousse. Pharmacokinetics and haemodynamic effects of prolonged methohexitone infusion. Br. J. Clin. Pharmacol. 26:589–594 (1988).

    Google Scholar 

  94. D. D. Breimer. Pharmacokinetics of methohexitone following intravenous infusion in humans. Br. J. Anaesth. 48:643–649 (1976).

    PubMed  CAS  Google Scholar 

  95. J. Godbillon, J. Richard, A. Gerardin, T. Meinertz, W. Kasper, and E. Jahnchen. Pharmacokinetics of the enantiomers of acenocoumarol in man. Br. J. Clin. Pharmacol. 12:621–629 (1981).

    PubMed  CAS  Google Scholar 

  96. R. Gugler, C. V. Manion, and D. L. Azarnoff. Phenytoin: pharmacokinetics and bioavailability. Clin. Pharmacol. Ther. 19:135–142 (1976).

    PubMed  CAS  Google Scholar 

  97. K. M. Jorga, B. Fotteler, P. Heizmann, and G. Zurcher. Pharmacokinetics and pharmacodynamics after oral and intravenous administration of tolcapone, a novel adjunct to Parkinson’s disease therapy. Eur. J. Clin. Pharmacol. 54:443–447 (1998).

    PubMed  CAS  Google Scholar 

  98. P. J. Pentikainen, O. Tokola, E. Alhava, and A. Penttila. Pharmacokinetics of tolfenamic acid: disposition in bile, blood and urine after intravenous administration to man. Eur. J. Clin. Pharmacol. 27:349–354 (1984).

    PubMed  CAS  Google Scholar 

  99. R. K. Verbeeck, J. L. Blackburn, and G. R. Loewen. Clinical pharmacokinetics of non-steroidal anti-inflammatory drugs. Clin. Pharmacokinet. 8:297–331 (1983).

    PubMed  CAS  Google Scholar 

  100. D. Jung, E. Mroszczak, and L. Bynum. Pharmacokinetics of ketorolac tromethamine in humans after intravenous, intramuscular and oral administration. Eur. J. Clin. Pharmacol. 35:423–425 (1988).

    PubMed  CAS  Google Scholar 

  101. H. Heikkinen, M. Saraheimo, S. Antila, P. Ottoila, and P. J. Pentikainen. Pharmacokinetics of entacapone, a peripherally acting catechol-O-methyltransferase inhibitor, in man. A study using a stable isotope techique. Eur. J. Clin. Pharmacol. 56:821–826 (2001).

    PubMed  CAS  Google Scholar 

  102. T. B. Andersson, E. Bredberg, H. Ericsson, and H. Sjoberg. An evaluation of the in vitro metabolism data for predicting the clearance and drug-drug interaction potential of CYP2C9 substrates. Drug Metab. Dispos. 32:715–721 (2004).

    PubMed  CAS  Google Scholar 

  103. D. W. Boulton, U. K. Walle, and T. Walle. Extensive binding of the bioflavonoid quercetin to human plasma proteins. J. Pharm. Pharmacol. 50:243–249 (1998).

    PubMed  CAS  Google Scholar 

  104. L. Novaroli, G. B. Doulakas, M. Reist, B. Rolando, R. Fruttero, A. Gasco, and P. A. Carrupt. The lipophilicity behavior of three catechol-O-methyltransferase (COMT) inhibitors and simple analogues. Helv. Chim. Acta. 89:144–152 (2006).

    CAS  Google Scholar 

  105. U. Abshagen, G. Betzien, R. Endele, B. Kaufmann, and G. Neugebauer. Pharmacokinetics and metabolism of isosorbide-dinitrate after intravenous and oral administration. Eur. J. Clin. Pharmacol. 27:637–644 (1985).

    PubMed  CAS  Google Scholar 

  106. V. Billard, P. L. Gambus, J. Barr, C. F. Minto, L. Corash, J. W. Tessman, J. L. Stickney, and S. L. Shafer. The pharmacokinetics of 8-methoxypsoralen following i.v. administration in humans. Br. J. Clin. Pharmacol. 40:347–360 (1995).

    PubMed  CAS  Google Scholar 

  107. M. G. Soars, B. Burchell, and R. J. Riley. In vitro analysis of human drug glucuronidation and prediction of in vivo metabolic clearance. J Pharmacol Exp Ther. 301:382–390 (2002).

    PubMed  CAS  Google Scholar 

  108. A. Patel, P. M. Taylor, N. E. Wilsher, P. C. Butler, K. C. Ruparelia, and G. A. Potter. Use of an automated plate reader to measure partition coefficients. J. Pharm. Pharmacol. 57:S–81 (2005).

    Google Scholar 

  109. J. W. Cheng, S. L. Charland, L. M. Shaw, S. Kobrin, S. Goldfarb, E. J. Stanek, and S. A. Spinler. Is the volume of distribution of digoxin reduced in patients with renal dysfunction? Determining digoxin pharmacokinetics by fluorescence polarization immunoassay. Pharmacotherapy. 17:584–590 (1997).

    PubMed  CAS  Google Scholar 

  110. R. Kawai, D. Mathew, C. Tanaka, and M. Rowland. Physiologically based pharmacokinetics of cyclosporine A: extension to tissue distribution kinetics in rats and scale-up to human. J. Pharmacol. Exp. Ther. 287:457–468 (1998).

    PubMed  CAS  Google Scholar 

  111. B. Davies and T. Morris. Physiological parameters in laboratory animals and humans. Pharm. Res. 10:1093–1095 (1993).

    PubMed  CAS  Google Scholar 

  112. Y. Sakiya, Y. Tsuemura, Y. Sawada, M. Hanano, T. Marunaka, and Y. Umeno. Prediction of ftorafur disposition in rats and man by a physiologically based pharmacokinetic model. Int. J. Pharm. 25:347–358 (1985).

    CAS  Google Scholar 

  113. J. Boon, R. M. Broekhuy, P. Vanmunst, and E. Schretle. Abnormal pattern of phospholipids of plasma and erythrocytes in 4 children with obstructive jaundice with abnormal spontaneous hemolysis. Clin. Chim. Acta. 23:453 (1969).

    PubMed  CAS  Google Scholar 

  114. T. E. Morgan, F. A. Short, and L. A. Cobb. Effect of long-term exercise on skeletal muscle lipid composition. Am. J. Physiol. 216:82–86 (1969).

    PubMed  CAS  Google Scholar 

  115. P. Poulin and K. Krishnan. A mechanistic algorithm for predicting blood:air partition coefficients of organic chemicals with the consideration of reversible binding in hemoglobin. Toxicol. Appl. Pharmacol. 136:131–137 (1996).

    PubMed  CAS  Google Scholar 

  116. L. Radulescu, C. Stancu, and F. Antohe. Antibodies against human oxidized low-density lipoprotein (LDL) as markers for human plasma modified lipoproteins. Med. Sci. Monit. 10:BR207–BR214 (2004).

    PubMed  CAS  Google Scholar 

  117. G. Sjogaard and B. Saltin. Extra- and intracellular water spaces in muscles of man at rest and with dynamic exercise. Am. J. Physiol. 243:R271–R280 (1982).

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Financial support for this project was provided by the following Centre for Applied Pharmacokinetic Research (University of Manchester) Consortium members, GlaxoSmithKline, Novartis, Pfizer, Servier and Eli Lilly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trudy Rodgers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodgers, T., Rowland, M. Mechanistic Approaches to Volume of Distribution Predictions: Understanding the Processes. Pharm Res 24, 918–933 (2007). https://doi.org/10.1007/s11095-006-9210-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9210-3

Key words

Navigation