Pharmaceutical Research

, Volume 24, Issue 3, pp 438–449 | Cite as

Lipid-based Nanoparticles for Nucleic Acid Delivery

Expert Review

Abstract

Abstract

Lipid-based colloidal particles have been extensively studied as systemic gene delivery carriers. The topic that we would like to emphasize is the formulation/assembly of lipid-based nanoparticles (NP) with diameter under 100 nm for delivering nucleic acid in vivo. NP are different from cationic lipid–nucleic acid complexes (lipoplexes) and are vesicles composed of lipids and encapsulated nucleic acids with a diameter less than 100 nm. The diameter of the NP is an important attribute to enable NP to overcome the various in vivo barriers for systemic gene delivery such as: the blood components, reticuloendothelial system (RES) uptake, tumor access, extracellular matrix components, and intracellular barriers. The major formulation factors that impact the diameter and encapsulation efficiency of DNA-containing NP include the lipid composition, nucleic acid to lipid ratio and formulation method. The particle assembly step is a critical one to make NP suitable for in vivo gene delivery. NP are often prepared using a dialysis method either from an aqueous-detergent or aqueous-organic solvent mixture. The resulting particles have diameters about 100 nm and nucleic acid encapsulation ratios are >80%. Additional components can then be added to the particle after it is formed. This ordered assembly strategy enables one to optimize the particle physico-chemical attributes to devise a biocompatible particle with increased gene transfer efficacy in vivo. The components included in the sequentially assembled NP include: poly(ethylene glycol) (PEG)-shielding to improve the particle pharmacokinetic behavior, a targeting ligand to facilitate the particle–cell recognition and in some case a bioresponsive lipid or pH-triggered polymer to enhance nucleic acid release and intracellular trafficking. A number of groups have observed that a PEG-shielded NP is a robust and modestly effective system for systemic gene or small interfering RNA (siRNA) delivery.

Key words

DNA gene therapy liposome oligonucleotide small interfering RNA 

References

  1. 1.
    L. C. Heller, K. Ugen, and R. Heller. Electroporation for targeted gene transfer. Expert Opin. Drug Deliv. 2:255–268 (2005).PubMedCrossRefGoogle Scholar
  2. 2.
    J. E. Knapp and D. Liu. Hydrodynamic delivery of DNA. Methods Mol. Biol. 245:245–250 (2004).PubMedGoogle Scholar
  3. 3.
    R. I. Mahato and S. W. Kim. Pharmaceutical Perspectives of Nucleic Acid-based Therapeutics. Taylor & Francis, London, 2002.Google Scholar
  4. 4.
    P. L. Felgner, T. R. Gadek, M. Holm, R. Roman, H. W. Chan, M. Wenz, J. P. Northrop, G. M. Ringold, and M. Danielsen. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci. U. S. A. 84:7413–7417 (1987).PubMedCrossRefGoogle Scholar
  5. 5.
    Y. Xu, S. W. Hui, P. Frederik, and F. C. Szoka Jr. Physicochemical characterization and purification of cationic lipoplexes. Biophys. J. 77:341–353 (1999).PubMedGoogle Scholar
  6. 6.
    J. O. Radler, I. Koltover, T. Salditt, and C. R. Safinya. Structure of DNA–cationic liposome complexes: DNA intercalation in multilamellar membranes in distinct interhelical packing regimes. Science 275:810–814 (1997).PubMedCrossRefGoogle Scholar
  7. 7.
    N. S. Templeton, D. D. Lasic, P. M. Frederik, H. H. Strey, D. D. Roberts, and G. N. Pavlakis. Improved DNA: liposome complexes for increased systemic delivery and gene expression. Nat. Biotechnol. 15:647–652 (1997).PubMedCrossRefGoogle Scholar
  8. 8.
    L. Huang, M. C. Hung, and E. Wagner. Nonviral Vectors for Gene Therapy. Academic, San Diego, 1999.Google Scholar
  9. 9.
    M. L. Edelstein, M. R. Abedi, J. Wixon, and R. M. Edelstein. Gene therapy clinical trials worldwide 1989–2004—an overview. J. Gene Med. 6:597–602 (2004).PubMedCrossRefGoogle Scholar
  10. 10.
    A. D. Judge, V. Sood, J. R. Shaw, D. Fang, K. McClintock, and I. MacLachlan. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat. Biotechnol. 23:457–462 (2005).PubMedCrossRefGoogle Scholar
  11. 11.
    J. S. Zhang, F. Liu, and L. Huang. Implications of pharmacokinetic behavior of lipoplex for its inflammatory toxicity. Adv. Drug Deliv. Rev. 57:689–698 (2005).PubMedCrossRefGoogle Scholar
  12. 12.
    T. L. Jason, J. Koropatnick, and R. W. Berg. Toxicology of antisense therapeutics. Toxicol. Appl. Pharmacol. 201:66–83 (2004).PubMedCrossRefGoogle Scholar
  13. 13.
    K. L. Brigham, B. Meyrick, B. Christman, M. Magnuson, G. King, and L. C. Berry, Jr. In vivo transfection of murine lungs with a functioning prokaryotic gene using a liposome vehicle. Am. J. Med. Sci. 298:278–281 (1989).PubMedCrossRefGoogle Scholar
  14. 14.
    L. G. Barron, L. Gagne, and F. C. Szoka, Jr. Lipoplex-mediated gene delivery to the lung occurs within 60 minutes of intravenous administration. Hum. Gene Ther. 10:1683–1694 (1999).PubMedCrossRefGoogle Scholar
  15. 15.
    L. G. Barron and F. C. Szoka. The perplexing delivery mechanism of lipoplexes. In L. Huang, M. C. Hung, and E. Wagner (eds.), Nonviral Vectors for Gene Therapy, Academic, San Diego, 1999, pp. 229–266.CrossRefGoogle Scholar
  16. 16.
    C. Tros de Ilarduya, M. A. Arangoa, and N. Duzgunes. Transferrin–lipoplexes with protamine-condensed DNA for serum-resistant gene delivery. Methods Enzymol. 373:342–356 (2003).PubMedCrossRefGoogle Scholar
  17. 17.
    S. Simoes, A. Filipe, H. Faneca, M. Mano, N. Penacho, N. Duzgunes, and M. P. de Lima. Cationic liposomes for gene delivery. Expert Opin. Drug Deliv. 2:237–254 (2005).PubMedCrossRefGoogle Scholar
  18. 18.
    P. Harvie, F. M. P. Wong, and M. B. Bally. Use of poly(ethylene glycol)-lipid conjugates to regulate the surface attributes and transfection activity of lipid–DNA particles. J. Pharm. Sci. 89:652–663 (2000).PubMedCrossRefGoogle Scholar
  19. 19.
    W. J. Li, Z. H. Huang, J. A. MacKay, S. Grube, and F. C. Szoka. Low-pH-sensitive poly(ethylene glycol) (PEG)-stabilized plasmid nanlipoparticles: effects of PEG chain length, lipid composition and assembly conditions on gene delivery. J. Gene Med. 7:67–79 (2005).PubMedCrossRefGoogle Scholar
  20. 20.
    J. S. Choi, J. A. MacKay, and F. C. Szoka, Jr. Low-pH-sensitive PEG-stabilized plasmid–lipid nanoparticles: preparation and characterization. Bioconjug. Chem. 14:420–429 (2003).PubMedCrossRefGoogle Scholar
  21. 21.
    J. J. Wheeler, L. Palmer, M. Ossanlou, I. MacLachlan, R. W. Graham, Y. P. Zhang, M. J. Hope, P. Scherrer, and P. R. Cullis. Stabilized plasmid–lipid particles: construction and characterization. Gene Ther. 6:271–281 (1999).PubMedCrossRefGoogle Scholar
  22. 22.
    Y. P. Zhang, L. Sekirov, E. G. Saravolac, J. J. Wheeler, P. Tardi, K. Clow, E. Leng, R. Sun, P. R. Cullis, and P. Scherrer. Stabilized plasmid–lipid particles for regional gene therapy: formulation and transfection properties. Gene Ther. 6:1438–1447 (1999).PubMedCrossRefGoogle Scholar
  23. 23.
    L. B. Jeffs, L. R. Palmer, E. G. Ambegia, C. Giesbrecht, S. Ewanick, and I. MacLachlan. A scalable, extrusion-free method for efficient liposomal encapsulation of plasmid DNA. Pharma Res. 22:362–372 (2005).CrossRefGoogle Scholar
  24. 24.
    M. C. Woodle, L. R. Collins, E. Sponsler, N. Kossovsky, D. Papahadjopoulos, and F. J. Martin. Sterically stabilized liposomes. Reduction in electrophoretic mobility but not electrostatic surface potential. Biophys. J. 61:902–910 (1992).PubMedGoogle Scholar
  25. 25.
    P. Opanasopit, M. Nishikawa, and M. Hashida. Factors affecting drug and gene delivery: effects of interaction with blood components. Crit. Rev. Ther. Drug Carr. Syst. 19:191–233 (2002).CrossRefGoogle Scholar
  26. 26.
    B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. Molecular Biology of the Cell. Garland, New York, 2002.Google Scholar
  27. 27.
    I. A. Khalil, K. Kogure, H. Akita, and H. Harashima. Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacol. Rev. 58:32–45 (2006).PubMedCrossRefGoogle Scholar
  28. 28.
    E. Mastrobattista, M. A. van der Aa, W. E. Hennink, and D. J. Crommelin. Artificial viruses: a nanotechnological approach to gene delivery. Nat. Rev. Drug Discovery 5:115–121 (2006).CrossRefGoogle Scholar
  29. 29.
    S. C. Semple, S. K. Klimuk, T. O. Harasym, N. Dos Santos, S. M. Ansell, K. F. Wong, N. Maurer, H. Stark, P. R. Cullis, M. J. Hope, and P. Scherrer. Efficient encapsulation of antisense oligonucleotides in lipid vesicles using ionizable aminolipids: formation of novel small multilamellar vesicle structures. Biochim. Biophys. Acta 1510:152–166 (2001).PubMedCrossRefGoogle Scholar
  30. 30.
    Z. Huang, W. Li, J. A. MacKay, and F. C. Szoka, Jr. Thiocholesterol-based lipids for ordered assembly of bioresponsive gene carriers. Molec. Ther. 11:409–417 (2005).CrossRefGoogle Scholar
  31. 31.
    D. P. Siegel and R. M. Epand. The mechanism of lamellar-to-inverted hexagonal phase transitions in phosphatidylethanolamine: implications for membrane fusion mechanisms. Biophys. J. 73:3089–3111 (1997).PubMedGoogle Scholar
  32. 32.
    M. E. Hayes, D. C. Drummond, D. B. Kirpotin, W. W. Zheng, C. O. Noble, J. W. Park, J. D. Marks, C. C. Benz, and K. Hong. Genospheres: self-assembling nucleic acid–lipid nanoparticles suitable for targeted gene delivery. Gene Ther. 13:646–651 (2006).PubMedCrossRefGoogle Scholar
  33. 33.
    R. J. Lee and L. Huang. Folate-targeted, anionic liposome-entrapped polylysine-condensed DNA for tumor cell-specific gene transfer. J. Biol. Chem. 271:8481–8487 (1996).PubMedCrossRefGoogle Scholar
  34. 34.
    E. Mastrobattista, R. H. Kapel, M. H. Eggenhuisen, P. J. Roholl, D. J. Crommelin, W. E. Hennink, and G. Storm. Lipid-coated polyplexes for targeted gene delivery to ovarian carcinoma cells. Cancer Gene Ther. 8:405–413 (2001).PubMedCrossRefGoogle Scholar
  35. 35.
    D. B. Fenske, I. MacLachlan, and P. R. Cullis. Stabilized plasmid–lipid particles: a systemic gene therapy vector. Method Enzymol. 346:36–71 (2002).CrossRefGoogle Scholar
  36. 36.
    E. Ruoslahti and D. Rajotte. An address system in the vasculature of normal tissues and tumors. Annu. Rev. Immunol. 18:813–827 (2000).PubMedCrossRefGoogle Scholar
  37. 37.
    E. S. Scott, J. W. Wiseman, M. J. Evans, and W. H. Colledge. Enhanced gene delivery to human airway epithelial cells using an integrin-targeting lipoplex. J. Gene Med. 3:125–134 (2001).PubMedCrossRefGoogle Scholar
  38. 38.
    P. Harvie, B. Dutzar, T. Galbraith, S. Cudmore, D. O’Mahony, P. Anklesaria, and R. Paul. Targeting of lipid–protamine–DNA (LPD) lipopolyplexes using RGD motifs. J. Liposome Res. 13:231–247 (2003).PubMedCrossRefGoogle Scholar
  39. 39.
    Y. Lu and P. S. Low. Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv. Drug Deliv. Rev. 54:675–693 (2002).PubMedCrossRefGoogle Scholar
  40. 40.
    W. Guo, T. Lee, J. Sudimack, and R. J. Lee. Receptor-specific delivery of liposomes via folate-PEG-chol. J. Liposome Res. 10:179–195 (2000).CrossRefGoogle Scholar
  41. 41.
    L. Xu, K. F. Pirollo, and E. H. Chang. Tumor-targeted p53-gene therapy enhances the efficacy of conventional chemo/radiotherapy. J. Control. Release 74:115–128 (2001).PubMedCrossRefGoogle Scholar
  42. 42.
    W. Yu, K. F. Pirollo, A. Rait, B. Yu, L. M. Xiang, W. Q. Huang, Q. Zhou, G. Ertem, and E. H. Chang. A sterically stabilized immunolipoplex for systemic administration of a therapeutic gene. Gene Ther. 11:1434–1440 (2004).PubMedCrossRefGoogle Scholar
  43. 43.
    S. Han, R. I. Mahato, and S. W. Kim. Water-soluble lipopolymer for gene delivery. Bioconjug. Chem. 12:337–345 (2001).CrossRefGoogle Scholar
  44. 44.
    R. I. Mahato, M. Lee, S. Han, A. Maheshwari, and S. W. Kim. Intratumoral delivery of p2CMVmIL-12 using water-soluble lipopolymers. Molec. Ther. 4:130–138 (2001).CrossRefGoogle Scholar
  45. 45.
    X. Gao and L. Huang. Potentiation of cationic liposome-mediated gene delivery by polycations. Biochemistry 35:1027–1036 (1996).PubMedCrossRefGoogle Scholar
  46. 46.
    J. Dileo, R. Banerjee, M. Whitmore, J. V. Nayak, L. D. Falo, Jr., and L. Huang. Lipid–protamine–DNA-mediated antigen delivery to antigen-presenting cells results in enhanced anti-tumor immune responses. Molec. Ther. 7:640–648 (2003).CrossRefGoogle Scholar
  47. 47.
    R. E. Eliaz and F. C. Szoka, Jr. Robust and prolonged gene expression from injectable polymeric implants. Gene Ther. 9:1230–1237, (2002).PubMedCrossRefGoogle Scholar
  48. 48.
    N. Shi, Y. Zhang, C. Zhu, R. J. Boado, and W. M. Pardridge. Brain-specific expression of an exogenous gene after i.v. administration. Proc. Natl. Acad. Sci. U. S. A. 98:12754–12759 (2001).PubMedCrossRefGoogle Scholar
  49. 49.
    Y. Zhang, C. Zhu, and W. M. Pardridge. Antisense gene therapy of brain cancer with an artificial virus gene delivery system. Molec. Ther. 6:67–72 (2002).CrossRefGoogle Scholar
  50. 50.
    Y. Zhang, R. J. Boado, and W. M. Pardridge. In vivo knockdown of gene expression in brain cancer with intravenous RNAi in adult rats. J. Gene Med. 5:1039–1045 (2003).PubMedCrossRefGoogle Scholar
  51. 51.
    H. E. Hofland, L. Shephard, and S. M. Sullivan. Formation of stable cationic lipid/DNA complexes for gene transfer. Proc. Natl. Acad. Sci. U. S. A. 93:7305–7309 (1996).PubMedCrossRefGoogle Scholar
  52. 52.
    C. Y. Wang and L. Huang. pH-sensitive immunoliposomes mediate target-cell-specific delivery and controlled expression of a foreign gene in mouse. Proc. Natl. Acad. Sci. U. S. A. 84:7851–7855 (1987).PubMedCrossRefGoogle Scholar
  53. 53.
    K. W. Mok, A. M. Lam, and P. R. Cullis. Stabilized plasmid–lipid particles: factors influencing plasmid entrapment and transfection properties. Biochim. Biophys. Acta 1419:137–150 (1999).PubMedCrossRefGoogle Scholar
  54. 54.
    P. Tam, M. Monck, D. Lee, O. Ludkovski, E. C. Leng, K. Clow, H. Stark, P. Scherrer, R. W. Graham, and P. R. Cullis. Stabilized plasmid–lipid particles for systemic gene therapy. Gene Ther. 7:1867–1874 (2000).PubMedCrossRefGoogle Scholar
  55. 55.
    E. Ambegia, S. Ansell, P. Cullis, J. Heyes, L. Palmer, and I. MacLachlan. Stabilized plasmid–lipid particles containing PEG-diacylglycerols exhibit extended circulation lifetimes and tumor selective gene expression. Biochim. Biophys. Acta 1669:155–163 (2005).PubMedCrossRefGoogle Scholar
  56. 56.
    A. Judge, K. McClintock, J. R. Phelps, and I. Maclachlan. Hypersensitivity and loss of disease site targeting caused by antibody responses to PEGylated liposomes. Molec. Ther. 13:328–337 (2006).CrossRefGoogle Scholar
  57. 57.
    X. Guo and F. C. Szoka. Steric stabilization of fusogenic liposomes by a low-pH sensitive PEG–diortho ester-lipid conjugate. Bioconjug. Chem. 12:291–300 (2001).PubMedCrossRefGoogle Scholar
  58. 58.
    O. T. Jones, J. P. Earnest, and M. G. McNamee. Solubilization and reconstitution of membrane proteins. In J. B. C. Findlay and W. H. Evans (eds.), Biological Membranes: A Practical Approach, IRL, Oxford, 1987, pp. 139–177.Google Scholar
  59. 59.
    S. Batzri and E. D. Korn. Single bilayer liposomes prepared without sonication. Biochim. Biophys. Acta 298:1015–1019 (1973).PubMedCrossRefGoogle Scholar
  60. 60.
    M. J. Campbell. Lipofection reagents prepared by a simple ethanol injection technique. Biotechniques 18:1027–1032 (1995).PubMedGoogle Scholar
  61. 61.
    P. G. Arscott, C. Ma, J. R. Wenner, and V. A. Bloomfield. DNA condensation by cobalt hexaammine (III) in alcohol–water mixtures: dielectric constant and other solvent effects. Biopolymers 36:345–364 (1995).PubMedCrossRefGoogle Scholar
  62. 62.
    J. Piskur and A. Rupprecht. Aggregated DNA in ethanol solution. FEBS Lett. 375:174–178 (1995).PubMedCrossRefGoogle Scholar
  63. 63.
    A. L. Bailey and S. M. Sullivan. Efficient encapsulation of DNA plasmids in small neutral liposomes induced by ethanol and calcium. Biochim. Biophys. Acta 1468:239–252 (2000).PubMedCrossRefGoogle Scholar
  64. 64.
    N. Maurer, K. F. Wong, H. Stark, L. Louie, D. McIntosh, T. Wong, P. Scherrer, S. C. Semple, and P. R. Cullis. Spontaneous entrapment of polynucleotides upon electrostatic interaction with ethanol-destabilized cationic liposomes. Biophys. J. 80:2310–2326 (2001).PubMedGoogle Scholar
  65. 65.
    D. V. Morrissey, J. A. Lockridge, L. Shaw, K. Blanchard, K. Jensen, W. Breen, K. Hartsough, L. Machemer, S. Radka, V. Jadhav, N. Vaish, S. Zinnen, C. Vargeese, K. Bowman, C. S. Shaffer, L. B. Jeffs, A. Judge, I. MacLachlan, and B. Polisky. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat. Biotechnol. 23:1002–1007 (2005).PubMedCrossRefGoogle Scholar
  66. 66.
    A. D. Judge, G. Bola, A. C. Lee, and I. MacLachlan. Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo. Molec. Ther. 13:494–505 (2006).CrossRefGoogle Scholar
  67. 67.
    T. S. Zimmermann, A. C. Lee, A. Akinc, B. Bramlage, D. Bumcrot, M. N. Fedoruk, J. Harborth, J. A. Heyes, L. B. Jeffs, M. John, A. D. Judge, K. Lam, K. McClintock, L. V. Nechev, L. R. Palmer, T. Racie, I. Rohl, S. Seiffert, S. Shanmugam, V. Sood, J. Soutschek, I. Toudjarska, A. J. Wheat, E. Yaworski, W. Zedalis, V. Koteliansky, M. Manoharan, H. P. Vornlocher, and I. MacLachlan. RNAi-mediated gene silencing in non-human primates. Nature 441:111–114 (2006).PubMedCrossRefGoogle Scholar
  68. 68.
    W. Li and F. C. Szoka. Bioresponsive targeted charge neutral lipid vesicles for systemic gene delivery. In T. Friedmann and J. Rossi (eds.), Gene Transfer: Delivery and Expression of DNA and RNA, Cold Spring Harbor Laboratory Press, New York, 2006, pp. 441–450.Google Scholar
  69. 69.
    E. A. Murphy, A. J. Waring, S. M. Haynes, and K. J. Longmuir. Compaction of DNA in an anionic micelle environment followed by assembly into phosphatidylcholine liposomes. Nucleic Acids Res. 28:2986–2992 (2000).PubMedCrossRefGoogle Scholar
  70. 70.
    E. A. Murphy, A. J. Waring, J. C. Murphy, R. C. Willson, and K. J. Longmuir. Development of an effective gene delivery system: a study of complexes composed of a peptide-based amphiphilic DNA compaction agent and phospholipid. Nucleic Acids Res. 29:3694–3704 (2001).PubMedCrossRefGoogle Scholar
  71. 71.
    C. Chittimalla, L. Zammut-Italiano, G. Zuber, and J. P. Behr. Monomolecular DNA nanoparticles for intravenous delivery of genes. J. Am. Chem. Soc. 127:11436–11441 (2005).PubMedCrossRefGoogle Scholar
  72. 72.
    G. Zuber, L. Zammut-Italiano, E. Dauty, and J. P. Behr. Targeted gene delivery to cancer cells: Directed assembly of nanometric DNA particles coated with folic acid. Angew. Chem., Int. Ed. Engl. 42:2666–2669 (2003).CrossRefGoogle Scholar
  73. 73.
    M. Ouyang, J. S. Remy, and F. C. Szoka. Controlled template-assisted assembly of plasmid DNA into nanometric particles with high DNA concentration. Bioconjug. Chem. 11:104–112 (2000).PubMedCrossRefGoogle Scholar
  74. 74.
    E. Dauty, J. S. Remy, T. Blessing, and J. P. Behr. Dimerizable cationic detergents with a low cmc condense plasmid DNA into nanometric particles and transfect cells in culture. J. Am. Chem. Soc. 123:9227–9234 (2001).PubMedCrossRefGoogle Scholar
  75. 75.
    T. Blessing, E. Dauty, J. S. Remy, and J. P. Behr. Dimerizable detergents as gene transfer vectors. J. Liposome Res. 10:321–327 (2000).CrossRefGoogle Scholar
  76. 76.
    J. P. Rolland, B. W. Maynor, L. E. Euliss, A. E. Exner, G. M. Denison, and J. M. DeSimone. Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials. J. Am. Chem. Soc. 127:10096–10100 (2005).PubMedCrossRefGoogle Scholar
  77. 77.
    F. C. Szoka, Y. Xu, and O. Zelphati. How are nucleic acids released in cells from cationic lipid–nucleic acid complexes. J. Liposome Res. 6:567–587 (1996).CrossRefGoogle Scholar
  78. 78.
    Y. Xu and F. C. Szoka, Jr. Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection. Biochemistry 35:5616–5623 (1996).PubMedCrossRefGoogle Scholar
  79. 79.
    O. Zelphati and F.C. Szoka Jr. Mechanism of oligonucleotide release from cationic liposomes. Proc. Natl. Acad. Sci. USA 93:11493–11498 (1996).PubMedCrossRefGoogle Scholar
  80. 80.
    E. Dauty and A. S. Verkman. Actin cytoskeleton as the principal determinant of size-dependent DNA mobility in cytoplasm: a new barrier for non-viral gene delivery. J. Biol. Chem. 280:7823–7828 (2005).PubMedCrossRefGoogle Scholar
  81. 81.
    M. A. Monck, A. Mori, D. Lee, P. Tam, J. J. Wheeler, P. R. Cullis, and P. Scherrer. Stabilized plasmid–lipid particles: pharmacokinetics and plasmid delivery to distal tumors following intravenous injection. J. Drug Target. 7:439–452 (2000).PubMedCrossRefGoogle Scholar
  82. 82.
    D. B. Fenske, I. MacLachlan, and P. R. Cullis. Long-circulating vectors for the systemic delivery of genes. Curr. Opin. Mol. Ther. 3:153–158 (2001).PubMedGoogle Scholar
  83. 83.
    M. E. Hayes, D. C. Drummond, K. Hong, J. W. Park, J. D. Marks, and D. B. Kirpotin. Assembly of nucleic acid–lipid nanoparticles from aqueous–organic monophases. Biochim. Biophys. Acta 1758:429–442 (2006).PubMedCrossRefGoogle Scholar
  84. 84.
    X. Guo, J. A. MacKay, and F. C. Szoka. Mechanism of pH-triggered collapse of phosphatidylethanolamine liposomes stabilized by an ortho ester polyethyleneglycol lipid. Biophys. J. 84:1784–1795 (2003).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Departments of Biopharmaceutical Sciences and Pharmaceutical Chemistry, School of PharmacyUniversity of California at San FranciscoSan FranciscoUSA
  2. 2.Bayer Pharmaceuticals CorporationBerkeleyUSA

Personalised recommendations