Pharmaceutical Research

, Volume 24, Issue 2, pp 258–264 | Cite as

Spatio–temporal VEGF and PDGF Delivery Patterns Blood Vessel Formation and Maturation

  • Ruth R. Chen
  • Eduardo A. Silva
  • William W. Yuen
  • David J. Mooney
Research Paper

Abstract

Purpose

Biological mechanisms of tissue regeneration are often complex, involving the tightly coordinated spatial and temporal presentation of multiple factors. We investigated whether spatially compartmentalized and sequential delivery of factors can be used to pattern new blood vessel formation.

Materials and Methods

A porous bi-layered poly(lactide–co-glycolide) (PLG) scaffold system was used to locally present vascular endothelial growth factor (VEGF) alone in one spatial region, and sequentially deliver VEGF and platelet-derived growth factor (PDGF) in an adjacent region. Scaffolds were implanted in severely ischemic hindlimbs of SCID mice for 2 and 6 weeks, and new vessel formation was quantified within the scaffolds.

Results

In the compartment delivering a high dose of VEGF alone, a high density of small, immature blood vessels was observed at 2 weeks. Sequential delivery of VEGF and PDGF led to a slightly lower blood vessel density, but vessel size and maturity were significantly enhanced. Results were similar at 6 weeks, with continued remodeling of vessels in the VEGF and PDGF layer towards increased size and maturation.

Conclusions

Spatially localizing and temporally controlling growth factor presentation for angiogenesis can create spatially organized tissues.

Key words

angiogenesis vascular remodeling controlled drug delivery VEGF PDGF 

References

  1. 1.
    L. Coultas, K. Chawengsaksophak, and J. Rossant. Endothelial cells and VEGF in vascular development. Nature 438:937–945 (2005).PubMedCrossRefGoogle Scholar
  2. 2.
    L. C. Gerstenfeld, D. M. Cullinane, G. L. Barnes, D. T. Graves, and T. A. Einhorn. Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J. Cell. Biochem. 88:873–884 (2003).PubMedCrossRefGoogle Scholar
  3. 3.
    A, Eichmann, F. Le Noble, M. Autiero, and P. Carmeliet. Guidance of vascular and neural network formation. Curr. Opin. Neurobiol. 15:108–115 (2005).PubMedCrossRefGoogle Scholar
  4. 4.
    G. D. Yancopoulos, S. Davis, N. W. Gale, J. S. Rudge, S. J. Wiegand, and J. Holash. Vascular-specific growth factors and blood vessel formation. Nature 407:242–248 (2000).PubMedCrossRefGoogle Scholar
  5. 5.
    E. M. Conway, D. Collen, and P. Carmeliet. Molecular mechanisms of blood vessel growth. Cardiovasc. Res. 49:507–521 (2001).PubMedCrossRefGoogle Scholar
  6. 6.
    C. Ruhrberg. Growing and shaping the vascular tree: multiple roles for VEGF. BioEssays 25:1052–1060 (2003).PubMedCrossRefGoogle Scholar
  7. 7.
    Y. Dor, V. Djonov, and E. Keshet. Making vascular networks in the adult: branching morphogenesis without a roadmap. Trends Cell Biol. 13:131–136 (2003).PubMedCrossRefGoogle Scholar
  8. 8.
    T. Boontheekul, and D. J. Mooney. Protein-based signaling systems in tissue engineering. Curr. Opin. Biotechnol. 14:559–565 (2003).PubMedCrossRefGoogle Scholar
  9. 9.
    R. R. Chen, and D. J. Mooney. Polymeric growth factor delivery strategies for tissue engineering. Pharm. Res. 20:1103–1112 (2003).PubMedCrossRefGoogle Scholar
  10. 10.
    P. G. Campbell, E. D. Miller, G. W. Fisher, L. M. Walker, and L. E. Weiss. Engineered spatial patterns of FGF-2 immobilized on fibrin direct cell organization. Biomaterials 26:6762–6770 (2005).PubMedCrossRefGoogle Scholar
  11. 11.
    L. N. Luong, S. I. Hong, R. J. Patel, M. E. Outslay, and D. H. Kohn. Spatial control of protein within biomimetically nucleated mineral. Biomaterials 27:1175–1186 (2006).PubMedCrossRefGoogle Scholar
  12. 12.
    S. M. Peirce, R. J. Price, and T. C. Skalak. Spatial and temporal control of angiogenesis and arterialization using focal applications of VEGF164 and Ang-1. Am. J. Physiol. Heart Circ. Physiol. 286:H918–925 (2004).PubMedCrossRefGoogle Scholar
  13. 13.
    M. C. Peters, P. J. Polverini, and D. J. Mooney. Engineering vascular networks in porous polymer matrices. J. Biomed. Mater. Res. 60:668–678 (2002).PubMedCrossRefGoogle Scholar
  14. 14.
    Q. Sun, R. R. Chen, Y. Shen, D. J. Mooney, S. Rajagopalan, and P. M. Grossman. Sustained vascular endothelial growth factor delivery enhances angiogenesis and perfusion in ischemic hind limb. Pharm. Res. 22:1110–1116 (2005).PubMedCrossRefGoogle Scholar
  15. 15.
    T. P. Richardson, M. C. Peters, A. B. Ennett, and D. J. Mooney. Polymeric system for dual growth factor delivery. Nat. Biotechnol. 19:1029–1034 (2001).PubMedCrossRefGoogle Scholar
  16. 16.
    S. Cohen, T. Yoshioka, M. Lucarelli, L. H. Hwang, and R. Langer. Controlled delivery systems for proteins based on poly(lactic/glycolic acid) microspheres. Pharm. Res. 8:713–720 (1991).PubMedCrossRefGoogle Scholar
  17. 17.
    L. D. Harris, B. S. Kim, and D. J. Mooney. Open pore biodegradable matrices formed with gas foaming. J. Biomed. Mater. Res. 42:396–402 (1998).PubMedCrossRefGoogle Scholar
  18. 18.
    W. M. Saltzman. Drug Delivery: Engineering Principles for Drug Therapy. (eds.). Oxford University Press, London, UK, 2001.Google Scholar
  19. 19.
    R. B. Bird. Transport Phenomena. (eds.). Wiley, New York, 2001.Google Scholar
  20. 20.
    R. Bird, W. Stewart, and E. Lightfoot. Transport Phenomena. (eds.). Wiley, New York, 2002.Google Scholar
  21. 21.
    M. C. Peters, B. C. Isenberg, J. A. Rowley, and D. J. Mooney. Release from alginate enhances the biological activity of vascular endothelial growth factor. J. Biomater. Sci. Polym. Ed. 9:1267–1278 (1998).PubMedCrossRefGoogle Scholar
  22. 22.
    R. R. Chen, and D. J. Mooney. Host immune competence and local ischemia affects the functionality of engineered vasculature. Microcirculation 14(2) (2007)Google Scholar
  23. 23.
    E. Stabile, MS. Burnett, C. Watkins, T. Kinnaird, A. Bachis, A. la Sala, J. M. Miller, M. Shou, S. E. Epstein, and S. Fuchs. Impaired arteriogenic response to acute hindlimb ischemia in CD4-knockout mice. Circulation 108:205–210 (2003).PubMedCrossRefGoogle Scholar
  24. 24.
    T. Couffinhal, M. Silver, L. P. Zheng, M. Kearney, B. Witzenbichler, and J. M. Isner. Mouse model of angiogenesis. Am. J. Pathol. 152:1667–1679 (1998).PubMedGoogle Scholar
  25. 25.
    K. K. Hirschi, S. A. Rohovsky, L. H. Beck, S. R. Smith, and P. A. D’Amore. Endothelial cells modulate the proliferation of mural cell precursors via platelet-derived growth factor-BB and heterotypic cell contact. Circ. Res. 84:298–305 (1999).PubMedGoogle Scholar
  26. 26.
    Y. C. Huang, D. Kaigler, K. G. Rice, P. H. Krebsbach, and D. J. Mooney. Combined angiogenic and osteogenic factor delivery enhances bone marrow stromal cell-driven bone regeneration. J. Bone Miner. Res. 20:848–857 (2005).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Ruth R. Chen
    • 1
    • 2
  • Eduardo A. Silva
    • 2
  • William W. Yuen
    • 2
  • David J. Mooney
    • 2
  1. 1.Department of Biomedical EngineeringUniversity of MichiganAnn ArborUSA
  2. 2.Division of Engineering and Applied SciencesHarvard UniversityCambridgeUSA

Personalised recommendations