Skip to main content

Advertisement

Log in

Rational Design of a Dual-Mode Optical and Chemical Prodrug

  • Short Communication
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study is to demonstrate the rational design and behaviour of the first dual-mode optical and chemical prodrug, exemplified by an acetyl salicylic acid-based system.

Methods

A cyclic 1,4-benzodioxinone prodrug was synthesised by reaction of 3,5-dimethoxybenzoin and acetyl salicoyl chloride with pyridine. After purification by column chromatography and recrystallization, characterization was achieved using infrared and NMR spectroscopies, mass spectrometry, elemental analysis and single crystal X-ray diffraction. Light-triggered drug liberation was characterised via UV-visible spectroscopy following low-power 365 nm irradiation for controlled times. Chemical drug liberation was characterised via UV-visible spectroscopy in pH 5.5 solution.

Results

The synthetic method yielded pure prodrug, with full supporting characterisation. Light-triggered drug liberation proceeded at a rate of 8.30 × 10−2 s−1, while chemical, hydrolytic liberation proceeded independently at 1.89 × 10−3 s−1. The photochemical and hydrolytic reactions were both quantitative.

Conclusions

This study demonstrates the first rational dual-mode optical and chemical prodrug, using acetyl salicylic acid as a model, acting as a paradigm for future dual-mode systems. Photochemical drug liberation proceeds 44 times faster than chemical liberation, suggesting potential use in drug-eluting medical devices where an additional burst of drug is required at the onset of infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

2:

2-[1-(3,5-dimethoxyphenyl)-2-oxo-2-phenylethoxy]-2-methyl-1,3-benzodioxin-4-one

NMR:

nuclear magnetic resonance

PDT:

photodynamic therapy

TMS:

tetramethylsilane

References

  1. K. Park (ed.). Controlled Drug Delivery. Challenges and Strategies, ACS, Washington, D.C., 1997.

  2. D. D. Breimer. Future challenges for drug delivery. J. Control. Release 62:3–6 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. J. C. Sheehan and R. M. Wilson. Photolysis of desyl compounds. A new photolytic cyclisation. J. Am. Chem. Soc. 86:5277–5281 (1964).

    Article  CAS  Google Scholar 

  4. J. C. Sheehan, R. M. Wilson, and A. W. Oxford. The photolysis of methoxy-substituted benzoin esters. A photosensitive protecting group for carboxylic acids. J. Am. Chem. Soc. 93:7222–7228 (1971).

    Article  CAS  Google Scholar 

  5. M. C. Pirrung and C. Huang. Photochemical deprotection of 3,5-dimethoxybenzoin (DMB) carbamates derived from secondary amines. Tetrahedron Lett. 36:5883–5884 (1994).

    Google Scholar 

  6. J. F. Cameron, C. G. Willson, and J. M. J. Fréchet. Photogeneration of amines from α-keto carbamates: photochemical studies. J. Am. Chem. Soc. 118:12925–12937 (1996).

    Article  CAS  Google Scholar 

  7. M. Cano, M. Ladlow, and S. Balasubramanian. Studies on the chemical stability and functional group compatibility of the benzoin photolabile safety-catch linker using an analytical construct. J. Com. Chem. 4:44–48 (2002).

    Article  CAS  Google Scholar 

  8. H. B. Lee and S. Balasubramanian. Studies on dithiane-protected benzoin photolabile safety catch linker for solid-phase synthesis. J. Org. Chem. 64:3454 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Y. Shi, J. E. T. Corrie, and P. Wan. Mechanism of 3′,5′-dimethoxybenzoin ester photochemistry: heterolytic cleavage intramolecularly assisted by the dimethoxybenzene ring is the primary photochemical step. J. Org. Chem. 62:8278–8279 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. V. N. R. Pillai. Photoremovable protecting groups in organic synthesis. Synthesis 1–27 (1980).

  11. C. Rooney, G. Hayes, and C. P. McCoy. Photolytic release of ibuprofen from a 3,5-dimethoxybenzoin ester within a p(HEMA-co-MMA) polymer matrix. J. Pharm. Pharmacol. 55:S43 (2003).

    Google Scholar 

  12. J. L. West. Drug delivery—pulsed polymers. Nature Mater. 2:709–710 (2003).

    Article  CAS  Google Scholar 

  13. S. R. Sershen, G. A. Mensing, M. Ng, N. J. Halas, D. J. Beebe, and J. L. West. Independent optical control of microfluidic valves formed from optomechanically responsive nanocomposite hydrogels. Adv. Mater. 17:1366 (2005).

    Article  CAS  Google Scholar 

  14. E. R. Gillies and J. M. J. Fréchet. Development of acid-sensitive copolymer micelles for drug delivery. Pure Appl. Chem. 76:1295–1307 (2004).

    CAS  Google Scholar 

  15. G. A. Husseini, G. D. Myrup, W. G. Pitt, D. A. Christensen, and N. A. Y. Rapoport. Factors affecting acoustically triggered release of drugs from polymeric micelles. J. Control. Release. 69:43–52 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. M. Babincova, P. Sourivong, D. Chorvat, and P. Babinec. Laser triggered drug release from magnetoliposomes. J. Magn. Magn. Mater. 194:163–166 (1999).

    Article  CAS  Google Scholar 

  17. S. K. Li and A. D’Emanuele. On-off transport through a thermoresponsive hydrogel composite membrane. J. Control. Release. 75:55–67 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. G. Kong, G. Anyarambhatla, W. P. Petros, R. D. Braun, O. M. Colvin, D. Needham, and M. W. Dewhirst. Efficacy of liposomes and hyperthermia in a human tumor xenograft model: importance of triggered drug release. Cancer Res. 60:6950–6957 (2000).

    CAS  PubMed  Google Scholar 

  19. T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, and Q. Peng. Photodynamic therapy. J. Nat. Cancer Inst. 90:889–905 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. W. A. Denny. Prodrug strategies in cancer therapy. Eur. J. Med. Chem. 36:577–595 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. I. Kalèiæ, B. Zorc, and I. Butula. Macromolecular prodrugs .7. Polymer-dopamine conjugates. Int. J. Pharm. 136:31–36 (1996).

    Article  Google Scholar 

  22. J. F. Gilmer, L. M. Moriarty, M. N. Lally, and J. M. Clancy. Isosorbide-based aspirin prodrugs II. Hydrolysis kinetics of isosorbide diaspirinate. Eur. J. Pharm. Sci. 16:297–304 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. G. Jones. Decreased toxicity and adverse reactions via prodrugs. In H. Bundgaard (ed.), Design of Prodrugs, Elsevier, Amsterdam, 1985, pp. 199–233.

    Google Scholar 

  24. G. Paris, D. L. Garmaise, D. G. Cimon, L. Swett, G. W. Carter, and P. Young. Glycerides as prodrugs .2. 1,3-Dialkanoyl-2-(2-methyl-4-oxo-1,3-benzodioxan-2-yl)glycerides (cyclic aspirin triglycerides) as anti-inflammatory agents. J. Med. Chem. 23:79–82 (1980).

    Article  CAS  PubMed  Google Scholar 

  25. T. Loftsson and N. Bodor. Improved delivery through biological-membranes .10. Percutaneous absorption and metabolism of methylsulfinylmethyl 2-acetoxybenzoate and related aspirin prodrugs. J. Pharm. Sci. 70:756–758 (1981).

    Article  CAS  PubMed  Google Scholar 

  26. SAINT-NT. Program for Data Collection and Data Reduction, Bruker-AXS, Madison, WI, 1998.

    Google Scholar 

  27. G. M. Sheldrick. SHELXTL Version 5.0, A System for Structure Solution and Refinement, Bruker-AXS, Madison, WI, 1998.

  28. C. Rüchardt and S. Rochlitz. Ambivalent reactivity of o-acetylsalicyloyl chloride. Justus Liebigs Ann. Chem. 1:15–23 (1974).

    Google Scholar 

  29. M. Ankersen, K. Nielsen, and A. Senning. Synthesis, properties and prodrug potential of 2-methyl-2-oxy-4H-1,3-benzodioxin-4-ones and 2-methyl-2-thio-4H-1,3-benzodioxin-4-ones. Acta Chem. Scand. 43:213–221 (1989).

    CAS  PubMed  Google Scholar 

  30. M. Ankersen and A. Senning. Aspirin prodrugs—synthesis and hydrolysis of 2-benzyloxy-2-methyl-4H-1,3-benzodioxin-4-ones. Acta Chem. Scand. 43:793–798 (1989).

    CAS  PubMed  Google Scholar 

  31. J. E. Jørgensen and A. B. Hansen. Structure and conformation of 2-methyl-2-(2-naphthyloxy)-4H-1,3 benzodioxin-4-one. Acta Crystallogr., B Struct. Sci. 38:991–993 (1982).

    Article  Google Scholar 

  32. K. K. Nielsen and A. Senning. Aspirin prodrugs—synthesis of 2-substituted 2-methyl-4H-1,3-benzodioxin-4-ones and their screening for prodrug potential. Acta Chem. Scand. 44:952–956 (1990).

    Article  CAS  PubMed  Google Scholar 

  33. M. R. Diaz-Mondéjar and M. A. Miranda. Photolysis of 2-aryloxy-1,3-benzodioxan-4-ones or 2-arylthio-1,3-benzodioxan-4-ones. Heterocycles 22:1125-1131 (1984).

    Article  Google Scholar 

  34. H. L. T. Mobley and J. W. Warren. Urease-positive bacteriuria and obstruction of long-term urinary catheters. J. Clin. Microbiol. 25:2216–2217 (1987).

    CAS  PubMed  Google Scholar 

  35. J. Kost and R. Langer. Responsive polymer systems for controlled delivery of therapeutics. Trends Biotechnol. 10:127–131 (1992).

    Article  CAS  PubMed  Google Scholar 

  36. R. O. Darouiche, I. M. Raad, S. O. Heard, J. I. Thornby, O. C. Wenker, A. Gabrielli, J. Berg, N. Khardori, H. Hanna, R. Hachem, R. L. Harris and G. Mayhall. A comparison of two antimicrobial-impregnated central venous catheters. New Eng. J. Med. 340:1–8 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

AcknowledgmentS

The receipt of a Royal Society University Research Fellowship (to McCoy), funding from Queen’s University Belfast (to Rooney) and use of the EPSRC National Mass Spectrometry Service Centre, Swansea is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin P. McCoy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCoy, C.P., Rooney, C., Jones, D.S. et al. Rational Design of a Dual-Mode Optical and Chemical Prodrug. Pharm Res 24, 194–200 (2007). https://doi.org/10.1007/s11095-006-9145-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9145-8

Key words

Navigation