Skip to main content

Advertisement

Log in

Antiangiogenic Effect of Bile Acid Acylated Heparin Derivative

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Chemically modified heparin–DOCA was prepared and found to have markedly lower anticoagulant activity than heparin. In the present study, we elucidated the antiangiogenic and antitumoral activities of heparin–DOCA derivative.

Methods

To evaluate the antiangiogenic and antitumoral effects of heparin–DOCA, capillary-like tube formation assay, Matrigel plug assay in vivo, western blotting for FGFR phosphorylation, ERK and p38 MAPK activities, tumor growth of SCC in vivo and immunostaining of blood vessels in tumor tissues were performed.

Results

Heparin–DOCA inhibited capillary-like tubular structures of endothelial cells and bFGF-induced neovascularizations in Matrigel plug assays. Signaling experiments showed that heparin–DOCA significantly inhibited angiogenesis by suppressing the phosphorylation of FGFR and its downstream signal pathways (ERK and p38 MAPK activities). The antiangiogenic activity of this heparin derivative was found to be closely associated with antitumoral activity in a mouse model. In addition, histological evaluations supported the inhibitory effect of heparin–DOCA on blood vessel formation in tumor tissues.

Conclusion

Heparin–DOCA derivative exerted a significant antitumoral effect by inhibiting angiogenesis resulting from the disruption of FGF/FGFR and its downstream signal pathways, and could be applied to treat various angiogenic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

aPTT:

activated partial thromboplastin time

bFGF:

basic fibroblast growth factor

DOCA-NH2 :

N-deoxycholylethylenediamine

ECM:

extracellular matrix

ERK:

extracellular signal-regulated kinase

FGFR:

fibroblast growth factor receptor

HSPGs:

heparan sulfate proteoglycans

HUVECs:

human umbilical vein endothelial cells

MAPK:

mitogen-activated protein kinase

SCC:

squamous cell carcinoma

References

  1. R. J. Linhardt, and D. Loganathan. In C. G. Gelelein (eds.), Biomimetic Polymers, Plenum, New York, 1990, p. 135.

    Google Scholar 

  2. U. Lindahl, K. Lidholt, D. Spillmann, and L, Kjellen. More to heparin than anticoagulation. Thromb. Res. 75:1–32 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. S. Soker, D. Goldstaub, C. M. Svahn, I. Vlodavsky, B. Z. Levi, and G. Neufeld. Variations in the size and sulfation of heparin modulate the effect of heparin on the binding of VEGF165 to its receptors. Biochem. Biophys. Res. Comm. 203:1339–1347 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. G. Mannori, P. Crottet, O. Cecconi, K. Hanasaki, A. Aruffo, R. M. Nelson, A. Varki, and M. P. Bevilacqua. Differential colon cancer cell adhesion to E-, P-, and L-selectin: role of mucin-type glycoproteins. Cancer. Res. 55:4425–4431 (1995).

    CAS  PubMed  Google Scholar 

  5. L. Borsig, R. Wong, R. O. Hynes, N. M. Varki, and A. Varki. Synergistic effects of L- and P-selectin in facilitating tumor metastasis can involve non-mucin ligands and implicate leukocytes as enhancers of metastasis. Proc. Natl. Acad. Sci. USA. 99:2193–2198 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. L. Borsig. Selectins facilitate carcinoma metastasis and heparin can prevent them. News Physiol. Sci. 19:16–21 (2004).

    CAS  PubMed  Google Scholar 

  7. R. J. Ludwig, B. Boehme, M. Podda, R. Henschler, E. Jager, C. Tandi, W-H. Boehncke, T. M. Zollner, R. Kaufmann, and J. Gille. Endothelial P-selectin as a target of heparin action in experimental melanoma lung metastasis. Cancer Res. 64:2743–2750 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. S. M. Smorenburg, and C. J. Van Noorden. The complex effects of heparins on cancer progression and metastasis in experimental studies. Pharmacol. Rev. 53:93–105 (2001).

    CAS  PubMed  Google Scholar 

  9. M. N. Levine, J. Hirsh, J. G. Kelton. Heparin-induced bleeding. In D. A. Lane and U. Lindhal (eds.), Heparin: chemical and biological properties, Clinical Applications, CRC, 1989, pp. 517–531.

  10. F. Lapierre, K. Holme, L. Lam, R. J. Tressler, N. Storm, J. Wee, R. J. Stack, J. Castellot, and D. J. Tyrrell. Chemical modifications of heparin that diminish its anticoagulant but preserve its heparanase-inhibitory, angiostatic, anti-tumor and anti-metastatic properties. Glycobiology 6:355–366 (1996).

    CAS  PubMed  Google Scholar 

  11. T. Irimura, M. Nakajima, G. L. Nicolson. Chemically modified heparins as inhibitors of heparan sulfate specific endo-β-glucuronidase (heparanase) of metastatic melanoma cells. Biochemistry 25:5322–5328 (1986).

    Article  CAS  PubMed  Google Scholar 

  12. P. E. Thorpe, E. J. Derbyshire, S. P. Andrade, N. Press, P. P. Knowles, S. King, G. J. Watson, Y. C. Yang, and M. Rao-Bette. Heparin–steroid conjugates: new angiogenesis inhibitors with antitumor activity in mice. Cancer Res. 53:3000–3007 (1993).

    CAS  PubMed  Google Scholar 

  13. L. Lundin, H. Larsson, J. Kreuger, S. Kanda, U. Lindahl, M. Salmivirta, and L. Claesson-Welsh. Selectively desulfated heparin inhibits fibroblast growth factor-induced mitogenicity and angiogenesis. J. Biol. Chem. 275:24653–24660 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. K. Ono, M. Ishihara, K. Ishikawa, Y. Ozeki, H. Deguchi, M. Sato, H. Hashimoto, Y. Saito, H. Yura, A. Kurita, and T. Maehara. Periodate-treated, non-anticoagulant heparin-carrying polystyrene (NAC-HCPS) affects angiogenesis and inhibits subcutaneous induced tumor growth and metastasis to the lung. Br. J. Cancer 86:1803–1812 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. C. Y. Pumphrey, A. M. Theus, S. Li, R. S. Parrish, and R. D. Sanderson. Neoglycans, carbodiimide-modified glycosaminoglycans: a new class of anticancer agents that inhibit cancer cell proliferation and induce apoptosis. Cancer Res. 62:3722–3728 (2002).

    CAS  PubMed  Google Scholar 

  16. K. Park, K. Kim, I. C. Kwon, S. K. Kim, S. Lee, D. Y. Lee, and Byun Y. Preparation and characterization of self-assembled nanoparticles of heparin–deoxycholic acid conjugates. Langmuir 20:11726–11731 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. K. Park, G. Y. Lee, Y. S. Kim, M. Yu, R. W. Park, I. S. Kim, S. Y. Kim, and Y. Byun. Heparin–DOCA acid chemical conjugate as an anti-cancer drug carrier and its anti-tumor activity. J. Control. Release. 114:300–306 (2006)

    Article  CAS  PubMed  Google Scholar 

  18. B. Glimelius, C. Busch, and M. Höök. Binding of heparin on the surface of cultured human endothelial cells. Thromb. Res. 12:773–782 (1978).

    Article  CAS  PubMed  Google Scholar 

  19. T. Bârzu, P. Molho, G. Tobelem, M. Petitou, and J. Caen. Binding and endocytosis of heparin by human endothelial cells in culture. Biochim. Biophys. Acta. 845:196–203 (1985).

    Article  PubMed  Google Scholar 

  20. B. Hobson, and J. Denekamp. Endothelial proliferation in tumors and normal tissues: continuous labeling studies. Br. J. Cancer 49:405–413 (1984).

    CAS  PubMed  Google Scholar 

  21. P. K. Smith, A. K. Mallia, and G. T. Hermanson. Colorimetric method for the assay of heparin content in immobilized heparin preparations. Anal. Biochem. 109:466–473 (1980).

    Article  CAS  PubMed  Google Scholar 

  22. Y. Lee, H. T. Moon, and Y. Byun. Preparation of slightly hydrophobic heparin derivatives which can be used for solvent casting in polymeric formulation. Thromb. Res. 92:149–156 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. D. A. Jaffe, R. L. Nachman, C. G. Becker, and C. R. Minick. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J. Clin. Invest. 52:2745–2756 (1973).

    Article  CAS  PubMed  Google Scholar 

  24. J. O. Nam, J. E. Kim, H. W. Jeong, S. J. Lee, B. H. Lee, J. Y. Choi, R. W. Park, J. Y. Park, and I. S. Kim. Identification of the αvβ3 integrin-interacting motif of βig-h3 and its anti-angiogenic effect. J. Biol. Chem. 78:25902–25909 (2003).

    Article  CAS  Google Scholar 

  25. A. Compagni, P. Wilgenbus, M. A. Impagnatiello, M. Cotton, and G. Christofori. Fibroblast growth factors are required for efficient tumor angiogenesis. Cancer Res. 60:7163–7169 (2000).

    CAS  PubMed  Google Scholar 

  26. L. D. Thompson, M. W. Pantoliano, and B. A. Springer BA. Energetic characterization of the basic fibroblast growth factor–heparin interaction: identification of the heparin binding domain. Biochemistry 33: 3831–3840 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. L. Pellegrini, D. F. Burke, F. von Delft, B. Mulloy, and T. L. Blundell. Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin. Nature 407:1029–1034 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. P. A. Raj, E. Marcus, and R. Rein. Conformational requirements of suramin to target angiogenic growth factors. Angiogenesis. 2:183–199 (1998).

    CAS  PubMed  Google Scholar 

  29. M. W. Pantoliano, R. A. Horlick, B. A. Springer, D. E. Van Dyk, and T. Tobery, D. R. Wetmore, J. D. Lear, A. T. Nahapetian, J. D. Bradley, and W. P. Sisk. Multivalent ligand–receptor binding interactions in the fibroblast growth factor system produce a cooperative growth factor and heparin mechanism for receptor dimerization. Biochemistry 33:10229–10248 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. L. M. Hibert, and L. B. Jacques. The observation of heparin on endothelium after injection. Thromb. Res. 8:195–204 (1976).

    Article  Google Scholar 

  31. N. Sakamoto, and N. G. Tanaka. Mechanism of the synergistic effect of heparin and cortisone against angiogenesis and tumor growth. Cancer J. 2:9–16 (1988).

    CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Next generation New Technology Development Program of the Korean Ministry of Commerce, Industry, and Energy (Grant No. #10011353).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngro Byun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, K., Kim, YS., Lee, G.Y. et al. Antiangiogenic Effect of Bile Acid Acylated Heparin Derivative. Pharm Res 24, 176–185 (2007). https://doi.org/10.1007/s11095-006-9139-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9139-6

Key words

Navigation