Skip to main content

Advertisement

Log in

Thiolated Chitosan/DNA Nanocomplexes Exhibit Enhanced and Sustained Gene Delivery

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Thiolated chitosan appears to possess enhanced mucoadhesiveness and cell penetration properties, however, its potential in gene-drug delivery remains unknown. Herein, we report on a highly effective gene delivery system utilizing a 33-kDa thiol-modified chitosan derivative.

Methods

Thiolated chitosan was prepared by the reaction with thioglycolic acid. Nanocomplexes of unmodified chitosan or thiolated chitosan with plasmid DNA encoding green fluorescenct protein (GFP) were characterized for their size, zeta potential, their ability to bind and protect plasmid DNA from degradation. The transfection efficiency of thiolated chitosan and sustained gene expression were evaluated in various cell lines in vitro and in Balb/c mice in vivo.

Results

Thiolated chitosan–DNA nanocomplexes ranged in size from 75 to 120 nm in diameter and from +2.3 to 19.7 mV in zeta potential, depending on the weight ratio of chitosan to DNA. Thiolated chitosan, CSH360, exhibited effective physical stability and protection against DNase I digestion at a weight ratio ≥ 2.5:1. CSH360/DNA nanocomplexes induced significantly (P < 0.01) higher GFP expression in HEK293, MDCK and Hep-2 cell lines than unmodified chitosan. Nanocomplexes of disulphide-crosslinked CSH360/DNA showed a sustained DNA release and continuous expression in cultured cells lasting up to 60 h post transfection. Also, intranasal administration of crosslinked CSH360/DNA nanocomplexes to mice yielded gene expression that lasted for at least 14 days.

Conclusions

Thiolated chitosans condense pDNA to form nanocomplexes, which exhibit a significantly higher gene transfer potential and sustained gene expression upon crosslinking, indicating their great potential for gene therapy and tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

References

  1. A. K. Salem, P. C. Searson, and K. W. Leong. Multifunctional nanorods for gene delivery. Nature Materials 2:668–671 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. S. A. Agnihotri, N. N. Mallikarjuna, and T. M. Aminabhavi. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J. Control. Release 100:5–28 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. T. Yamada, Y. Iwasaki, H. Tada, H. Iwabuki, M. K. L. Chuah, T. VandenDriessche, H. Fukuda, A. Kondo, M. Ueda, M. Seno, K. Tanizawa, and S. Kuroda. Nanoparticles for the delivery of genes and drugs to human hepatocytes. Nat. Biotechnol. 21:885–890 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. S. Mansouri, P. Lavigne, K. Corsi, M. Benderdour, E. Beaumont, and J. C. Fernandes. Chitosan–DNA nanoparticles as non-viral vectors in gene therapy: strategies to improve transfection efficacy. Eur. J. Pharm. Biopharm. 57:1–8 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. M. Ravi Kumar, M. Sameti, S. S. Mohapatra, X. Kong, R. F. Lockey, U. Bakowsky, G. Lindenblatt, H. Schmidt, and C. M. Lehr. Cationic silica nanoparticles as gene carriers: synthesis, characterization and transfection efficiency in vitro and in vivo. J. Nanosci. Nanotechnol. 4:876–881 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. G. Hellermann and S. S. Mohapatra. Genetic therapy: on the brink of a new future. Genet. Vaccines Ther. 4:1 (2003).

    Article  Google Scholar 

  7. M. Lee, J. W. Nah, Y. Kwon, J. J. Koh, K. S. Ko, and S. W. Kim. Water-soluble and low molecular weight chitosan-based plasmid DNA delivery. Pharm. Res. 18:427–431 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. H. Shen, J. Tan, and W. M. Saltzman. Surface-mediated gene transfer from nanocomposites of controlled texture. Nature Materials 3:569–574 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. W. D. Zhang, H. Yang, X. Y. Kong, S. Mohapatra, H. San Juan-Vergara, G. Hellermann, S. Behera, R. Singam, R. F. Lockey, and S. S. Mohapatra. Inhibition of respiratory syncytial virus infection with intranasal siRNA nanoparticles targeting the viral NS1 gene. Nat. Med. 11:56–62 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. M. Ravi Kumar, S. S. Mohapatra, X. Kong, P. K. Jena, U. Bakowsky, and C. M. Lehr. Cationic poly(lactide-co-glycolide) nanoparticles as efficient in vivo gene transfection agents. J. Nanosci. Nanotechnol. 4:990–994 (2004).

    Article  CAS  Google Scholar 

  11. M. Ravi Kumar, G. Hellermann, R. F. Lockey, and S. S. Mohapatra. Nanoparticle-mediated gene delivery: State of the art. Expert Opin. Biol. Ther. 4:1213–1224 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. M. Kumar, A. K. Behera, R. F. Lockey, J. Zhang, G. Bhullar, C. P. De La Cruz, L. C. Chen, K. W. Leong, S. K. Huang, and S. S. Mohapatra. Intranasal gene transfer by chitosan–DNA nanospheres protects BALB/c mice against acute respiratory syncytial virus infection. Hum. Gene Ther. 13:1415–1425 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. S. S. Mohapatra. Mucosal gene expression vaccine: a novel vaccine strategy for respiratory syncytial virus. Pediatr. Infect. Dis. J. 22:S100–S104 (2003).

    Article  PubMed  Google Scholar 

  14. M. Kumar, X. Kong, A. K. Behera, G. R. Hellermann, R. F. Lockey, and S. S. Mohapatra. Chitosan IFN-r-pDNA nanoparticle (CIN) therapy for allergic asthma. Genet. Vaccines Ther. 1:1–3 (2003).

    Article  PubMed  Google Scholar 

  15. Y. C. Wang, S. H. Kao, and H. J. Hsieh. A chemical surface modification of chitosan by glycoconjugates to enhance the cell–biomaterial interaction. Biomacromolecules 4:224–231 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. T. Kiang, H. Wen, H. W. Lim, and K. W. Leong. The effect of the degree of chitosan deacetylation on the efficiency of gene transfection. Biomaterials 25:5293–5301 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. K. Y. Lee, I. C. Kwon, Y.-H. Kim, W. H. Jo, and S. Y. Jeong. Preparation of chitosan self-aggregates as a gene delivery system. J. Control. Release 51:213–220 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. M. Koping-Hoggard, K. M. Varum, M. Issa, S. Danielsen, B. E. Christensen, B. T. Stokke, and P. Artursson. Improved chitosan-mediated gene delivery based on easily dissociated chitosan polyplexes of highly defined chitosan oligomers. Gene Ther. 11:1441–1452 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. A. Bernkop-Schnurch, M. Hornof, and T. Zoidl. Thiolated polymers-thiomers: Synthesis and in vitro evaluation of chitosan-2-iminothiolane conjugates. Int. J. Pharm. 260:229–237 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. M. Roldo, M. Hornof, P. Caliceti, and A. Bernkop-Schnurch. Mucoadhesive thiolated chitosans as platforms for oral controlled drug delivery: synthesis and in vitro evaluation. Eur. J. Pharm. Biopharm. 57:115–121 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. C. E. Kastand A. Bernkop-Schnurch. Thiolated polymers–thiomers: development and in vitro evaluation of chitosan–thioglycolic acid conjugates. Biomaterials 22:2345–2352 (2001).

    Article  Google Scholar 

  22. H. K. N. Langoth, G. Schoffmann, I. Schmerold, M. Schuh, S. Franz, P. Kurka, and A. Bernkop-Schnurch. Thiolated chitosans: design and in vivo evaluation of a mucoadhesive buccal peptide drug delivery system. Pharm. Res. 23:573–579 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. P. He, S. S. Davis, and L. Illum. In vitro evaluation of the mucoadhesive properties of chitosan microspheres. Int. J. Pharm. 166:75–88 (1998).

    Article  CAS  Google Scholar 

  24. A. Bernkop-Schnurch, C. E. Kast, and D. Guggi. Permeation enhancing polymers in oral delivery of hydrophilic macromolecules: thiomer/GSH systems. J. Control. Release 93:95–103 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. A. Bernkop-Schnurch, D. Guggi, and Y. Pinter. Thiolated chitosans: Development and in vitro evaluation of a mucoadhesive, permeation enhancing oral drug delivery system. J. Control. Release 94:177–186 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. A. Bernkop-Schnurch, M. Hornof, and D. Guggi. Thiolated chitosans. Eur. J. Pharm. Biopharm. 57:9–17 (2004).

    Article  PubMed  CAS  Google Scholar 

  27. T. Cerchiara, B. Luppi, F. Bigucci, and V. Zecchi. Chitosan salts as nasal sustained delivery systems for peptidic drugs. J. Pharm. Pharmacol. 55:1623–1627 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. D. W. Lee and R. H. Baney. Oligochitosan derivatives bearing electron-deficient aromatic rings for adsorption of amitriptyline: implications for drug detoxification. Biomacromolecules 5:1310–1315 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. T. Sato, T. Ishii, and Y. Okahata. In vitro gene delivery mediated by chitosan. Effect of pH, serum, and molecular mass of chitosan on the transfection efficiency. Biomaterials 22:2075–2080 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. T. Ishii, Y. Okahata, and T. Sato. Mechanism of cell transfection with plasmid/chitosan complexes. Biochim. Biophys. Acta, Biomembr. 1514:51–64 (2001).

    Article  CAS  Google Scholar 

  31. A. V. Ii’inaand V. P. Varlamov. Chitosan-based polyelectrolyte complexes: a review. Appl. Biochem. Microbiol. 41:5–11 (2005).

    Article  Google Scholar 

  32. N. Fang, V. Chan, H. Q. Mao, and K. W. Leong. Interactions of phospholipid bilayer with chitosan: effect of molecular weight and pH. Biomacromolecules 2:1161–1168 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. L. D. Shea, E. Smiley, J. Bonadio, and D. J. Mooney. DNA delivery from polymer matrices for tissue engineering. Nat. Biotechnol. 17:551–554 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. F. Scherer, U. Schillinger, U. Putz, A. Stemberger, and C. Plank. Nonviral vector loaded collagen sponges for sustained gene delivery in vitro and in vivo. J. Gene Med. 4:634–643 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. B. D. Klugherz, P. L. Jones, X. M. Cui, W. L. Chen, N. F. Meneveau, S. DeFelice, J. Connolly, R. L. Wilensky, and R. J. Levy. Gene delivery from a DNA controlled-release stent in porcine coronary arteries. Nat. Biotechnol. 18:1181–1184 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. H. Cohen, R. J. Levy, J. Gao, I. Fishbein, V. Kousaev, S. Sosnowski, S. Slomkowski, and G. Golomb. Sustained delivery and expression of DNA encapsulated in polymeric nanoparticles. Gene Ther. 7:1896–1905 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. H. Shen, E. Goldberg, and W. M. Saltzman. Gene expression and mucosal immune responses after vaginal DNA immunization in mice using a controlled delivery matrix. J. Control. Release 86:339–348 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. V. L. Truong-Le, J. T. August, and K. W. Leong. Controlled gene delivery by DNA-gelatin nanospheres. Hum. Gene Ther. 9:1709–1717 (1998).

    CAS  PubMed  Google Scholar 

  39. K. W. Chun, J. B. Lee, S. H. Kim, and T. G. Park. Controlled release of plasmid DNA from photo-cross-linked pluronic hydrogels. Biomaterials 26:3319–3326 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. M. L. Lorenzo-Lamosa, C. Remunan-Lopez, J. L. Vila-Jato, and M. J. Alonso. Design of microencapsulated chitosan microspheres for colonic drug delivery. J. Control. Release 52:109–118 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Y. H. Yun, D. J. Goetz, P. Yellen, and W. L. Chen. Hyaluronan microspheres for sustained gene delivery and site-specific targeting. Biomaterials 25:147–157 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. D. Luo and W. M. Saltzman. Synthetic DNA delivery systems. Nat. Biotechnol. 18:33–37 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. M. Koping-Hoggard, I. Tubulekas, H. Guan, K. Edwards, M. Nilsson, K. M. Varum, and P. Artursson. Chitosan as a nonviral gene delivery system. Structure–property relationships and characteristics compared with polyethylenimine in vitro and after lung administration in vivo. Gene Ther. 8:1108–1121 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by NIH (5RO1HL71101-01A2) awarded to SSM and Culverhouse Endowment to the Division of Allergy and Immunology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyam S. Mohapatra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, D., Zhang, W., Shirley, S.A. et al. Thiolated Chitosan/DNA Nanocomplexes Exhibit Enhanced and Sustained Gene Delivery. Pharm Res 24, 157–167 (2007). https://doi.org/10.1007/s11095-006-9136-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9136-9

Key words

Navigation