Skip to main content

Advertisement

Log in

Controlling Protein Compartmentalization to Overcome Disease

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Over the past decade, considerable progress has been made to improve our understanding of the intracellular transport of proteins. Mechanisms of nuclear import and export involving classical receptors have been studied. Signal sequences required for directing a protein molecule to a specific cellular compartment have been defined. Knowledge of subcellular trafficking of proteins has also increased our understanding of diseases caused due to mislocalization of proteins. A specific protein on deviating from its native cellular compartment may result in disease due to loss of its normal functioning and aberrant activity in the “wrong” compartment. Mislocalization of proteins results in diseases that range from metabolic disorders to cancer. In this review we discuss some of the diseases caused due to mislocalization. We further focus on application of nucleocytoplasmic transport to drug delivery. Various rationales to treat diseases by exploiting intracellular transport machinery have been proposed. Although the pathways for intracellular movement of proteins have been defined, these have not been adequately utilized for management of diseases involving mislocalized proteins. This review stresses the need for designing drug delivery systems utilizing these mechanisms as this area is least exploited but offers great potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A Nobel Prize for cell biology. Nat. Cell Biol. 1:E169 (1999).

    Google Scholar 

  2. M. Hagmen. Protein ZIP codes make Nobel journey. Science 286:666 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. M. T. Heemels. Medicine Nobel goes to pioneer of protein guidance mechanisms. Nature 401:625 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. D. Shields. Gunter Blobel—still passionate after all these years. Trends Cell Biol. 11:349–350 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. M. R. Hodel, A. H. Corbett, and A. E. Hodel. Dissection of a nuclear localization signal. J. Biol. Chem. 276:1317–1325 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. C. Kanwal, H. Li, and C. S. Lim. Model system to study classical nuclear export signals. AAPS PharmSci. 4 (2002).

  7. H. P. Bogerd, R. A. Fridell, R. E. Benson, J. Hua, and B. R. Cullen. Protein sequence requirements for function of the human T-cell leukemia virus type 1 Rex nuclear export signal delineated by a novel in vivo randomization–selection assay. Mol. Cell Biol. 16:4207–4214 (1996).

    CAS  PubMed  Google Scholar 

  8. B. R. Henderson and A. Eleftheriou. A comparison of the activity, sequence specificity, and CRM1-dependence of different nuclear export signals. Exp. Cell Res. 256:213–224 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. T. Ikuta, H. Eguchi, T. Tachibana, Y. Yoneda, and K. Kawajiri. Nuclear localization and export signals of the human aryl hydrocarbon receptor. J. Biol. Chem. 273:2895–2904 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. Molecular Biology of the Cell, Garland Science (Taylor and Francis Group), 2002.

  11. H. K. Anandatheerthavarada, G. Biswas, M. A. Robin, and N. G. Avadhani. Mitochondrial targeting and a novel transmembrane arrest of Alzheimer’s amyloid precursor protein impairs mitochondrial function in neuronal cells. J. Cell Biol. 161:41–54 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. S. Munro and H. R. Pelham. A C-terminal signal prevents secretion of luminal ER proteins. Cell 48:899–907 (1987).

    Article  CAS  PubMed  Google Scholar 

  13. D. A. Andres, I. M. Dickerson, and J. E. Dixon. Variants of the carboxyl-terminal KDEL sequence direct intracellular retention. J. Biol. Chem. 265:5952–5955 (1990).

    CAS  PubMed  Google Scholar 

  14. J. S. Bonifacino and L. M. Traub. Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu. Rev. Biochem. 6:6 (2003).

    Google Scholar 

  15. S. J. Gould, G. A. Keller, N. Hosken, J. Wilkinson, and S. Subramani. A conserved tripeptide sorts proteins to peroxisomes. J. Cell Biol. 108:1657–1664 (1989).

    Article  CAS  PubMed  Google Scholar 

  16. Q. Zeng, H. T. Tran, H. X. Tan, and W. Hong. The cytoplasmic domain of Vamp4 and Vamp5 is responsible for their correct subcellular targeting: The N-terminal extension of Vamp4 contains a dominant autonomous targeting signal for the trans-Golgi network. J. Biol. Chem. 6:6 (2003).

    Google Scholar 

  17. Y. X. Guo, K. Dallmann, and J. Kwang. Identification of nucleolus localization signal of betanodavirus GGNNV protein alpha. Virology 306:225–235 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. J. Liu, X. Du, and Y. Ke. Mapping nucleolar localization sequences of 1A6/DRIM. FEBS Lett. 580:1405–1410 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. T. Nakamura, H. Imai, N. Tsunashima, and Y. Nakagawa. Molecular cloning and functional expression of nucleolar phospholipid hydroperoxide glutathione peroxidase in mammalian cells. Biochem. Biophys. Res. Commun. 311:139–148 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. D. Gorlich and U. Kutay. Transport between the cell nucleus and the cytoplasm. Annu. Rev. Cell Dev. Biol. 15:607–660 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. P. Turpin, B. Ossareh-Nazari, and C. Dargemont. Nuclear transport and transcriptional regulation. FEBS Lett. 452:82–86 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. J. K. Hood and P. A. Silver. In or out? Regulating nuclear transport. Curr. Opin. Cell Biol. 11:241–247 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. R. Reichelt, A. Holzenburg, E. L. Buhle, Jr., M. Jarnik, A. Engel, and U. Aebi. Correlation between structure and mass distribution of the nuclear pore complex and of distinct pore complex components. J. Cell Biol. 110:883–894 (1990).

    Article  CAS  PubMed  Google Scholar 

  24. C. W. Akey and M. Radermacher. Architecture of the Xenopus nuclear pore complex revealed by three- dimensional cryo-electron microscopy. J. Cell Biol. 122:1–19 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. M. Suntharalingam and S. R. Wente. Peering through the pore: nuclear pore complex structure, assembly, and function. Dev. Cell 4:775–789 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. T. D. Allen, J. M. Cronshaw, S. Bagley, E. Kiseleva, and M. W. Goldberg. The nuclear pore complex: mediator of translocation between nucleus and cytoplasm. J. Cell Sci. 113:1651–1659 (2000).

    CAS  PubMed  Google Scholar 

  27. D. Stoffler, B. Fahrenkrog, and U. Aebi. The nuclear pore complex: from molecular architecture to functional dynamics. Curr. Opin. Cell Biol. 11:391–401 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. M. Seedorf, M. Damelin, J. Kahana, T. Taura, and P. A. Silver. Interactions between a nuclear transporter and a subset of nuclear pore complex proteins depend on Ran GTPase. Mol. Cell. Biol. 19:1547–1557 (1999).

    CAS  PubMed  Google Scholar 

  29. S. Shah, S. Tugendreich, and D. Forbes. Major binding sites for the nuclear import receptor are the internal nucleoporin Nup153 and the adjacent nuclear filament protein Tpr. J. Cell Biol. 141:31–49 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. M. K. Iovine and S. R. Wente. A nuclear export signal in Kap95p is required for both recycling the import factor and interaction with the nucleoporin GLFG repeat regions of Nup116p and Nup100p. J. Cell Biol. 137:797–811 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. M. K. Iovine, J. L. Watkins, and S. R. Wente. The GLFG repetitive region of the nucleoporin Nup116p interacts with Kap95p, an essential yeast nuclear import factor. J. Cell Biol. 131:1699–1713 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. P. L. Paine, L. C. Moore, and S. B. Horowitz. Nuclear envelope permeability. Nature 254:109–114 (1975).

    Article  CAS  PubMed  Google Scholar 

  33. C. M. Feldherr and D. Akin. The location of the transport gate in the nuclear pore complex. J. Cell Sci. 110:3065–3070 (1997).

    CAS  PubMed  Google Scholar 

  34. K. Weis. Regulating access to the genome: nucleocytoplasmic transport throughout the cell cycle. Cell 112:441–451 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. M. E. Lindsay, K. Plafker, A. E. Smith, B. E. Clurman, and I. G. Macara. Npap60/Nup50 is a Tri-S switch that stimulates importin-[alpha]:[beta]-mediated nuclear protein import. Cell 110:349–360 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. E. R. Griffis, N. Altan, J. Lippincott-Schwartz, and M. A. Powers. Nup98 is a mobile nucleoporin with transcription-dependent dynamics. Mol. Biol. Cell 13:1282–1297 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. C. E. J. Pritchard, M. Fornerod, L. H. Kasper, and J. M. A. Van Deursen. RAE1 is a shuttling mRNA export factor that binds to a GLEBS-like NUP98 motif at the nuclear pore complex through multiple domains. J. Cell Biol. 145:237–253 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. S. Nakielny, S. Shaikh, B. Burke, and G. Dreyfuss. Nup153 is an M9-containing mobile nucleoporin with a novel Ran-binding domain. EMBO J. 18:1982–1995 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. M. D. Blower, M. Nachury, R. Heald, and K. Weis. A Rae1-containing ribonucleoprotein complex is required for mitotic spindle assembly. Cell 121:223–234 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. N. Belgareh, G. Rabut, S. W. Bai, M. Van Overbeek, J. Beaudouin, N. Daigle, O. V. Zatsepina, F. Pasteau, V. Labas, M. Fromont-Racine, J. Ellenberg, and V. Doye. An evolutionarily conserved NPC subcomplex, which redistributes in part to kinetochores in mammalian cells. J. Cell Biol. 154:1147–1160 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. M. Winey, M. A. Hoyt, C. Chan, L. Goetsch, D. Botstein, and B. Byers. NDC1: a nuclear periphery component required for yeast spindle pole body duplication. J. Cell Biol. 122:743–751 (1993).

    Article  CAS  PubMed  Google Scholar 

  42. S. Karniely and O. Pines. Single translation–dual destination: mechanisms of dual protein targeting in eukaryotes. EMBO Rep. 6:420–425 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. L. F. Pemberton and B. M. Paschal. Mechanisms of receptor-mediated nuclear import and nuclear export. Traffic 6:187–198 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. I. G. Macara. Transport into and out of the nucleus. Microbiol. Mol. Biol. Rev. 65:570–594 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. D. Kalderon, B. L. Roberts, W. D. Richardson, and A. E. Smith. A short amino acid sequence able to specify nuclear location. Cell 39:499–509 (1984).

    Article  CAS  PubMed  Google Scholar 

  46. D. S. Goldfarb, A. H. Corbett, D. A. Mason, M. T. Harreman, and S. A. Adam. Importin [alpha]: a multipurpose nuclear-transport receptor. Trends Cell Biol. 14:505–514 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. I. W. Mattaj and L. Englmeier. Nucleocytoplasmic transport: the soluble phase. Annu. Rev. Biochem. 67:265–306 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. E. Izaurralde, U. Kutay, C. vonKobbe, I. W. Mattaj, and D. Gorlich. The asymmetric distribution of the constituents of the Ran system is essential for transport into and out of the nucleus. EMBO J. 16:6535–6547 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. P. Kalab, K. Weis, and R. Heald. Visualization of a Ran-GTP gradient in interphase and mitotic Xenopus egg extracts. Science 295:2452–2456 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. A. Efthymiadis, H. Shao, S. Hubner, and D. A. Jans. Kinetic characterization of the human retinoblastoma protein bipartite nuclear localization sequence (NLS) in vivo and in vitro. A comparison with the SV40 large T-antigen NLS. J. Biol. Chem. 272:22134–22139 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. T. Ylikomi, M. T. Bocquel, M. Berry, H. Gronemeyer, and P. Chambon. Cooperation of proto-signals for nuclear accumulation of estrogen and progesterone receptors. EMBO J. 11:3681–3694 (1992).

    CAS  PubMed  Google Scholar 

  52. A. Guiochon-Mantel, H. Loosfelt, P. Lescop, S. Sar, M. Atger, M. Perrot-Applanat, and E. Milgrom. Mechanisms of nuclear localization of the progesterone receptor: evidence for interaction between monomers. Cell 57:1147–1154 (1989).

    Article  CAS  PubMed  Google Scholar 

  53. A. Guiochon-Mantel, P. Lescop, S. Christin-Maitre, H. Loosfelt, M. Perrot-Applanat, and E. Milgrom. Nucleocytoplasmic shuttling of the progesterone receptor. EMBO J. 10:3851–3859 (1991).

    CAS  PubMed  Google Scholar 

  54. R. K. Tyagi, L. Amazit, P. Lescop, E. Milgrom, and A. Guiochon-Mantel. Mechanisms of progesterone receptor export from nuclei: role of nuclear localization signal, nuclear export signal, and ran guanosine triphosphate. Mol. Endocrinol. 12:1684–1695 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. M. Kohler, C. Speck, M. Christiansen, F. R. Bischoff, S. Prehn, H. Haller, D. Gorlich, and E. Hartmann. Evidence for distinct substrate specificities of importin alpha family members in nuclear protein import. Mol. Cell Biol. 19:7782–7791 (1999).

    CAS  PubMed  Google Scholar 

  56. M. Fornerod, M. Ohno, M. Yoshida, and I. W. Mattaj. CRM1 is an export receptor for leucine-rich nuclear export signals. Cell 90:1051–1060 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. M. E. Lindsay, J. M. Holaska, K. Welch, B. M. Paschal, and I. G. Macara. Ran-binding protein 3 is a cofactor for Crm1-mediated nuclear protein export. J. Cell Biol. 153:1391–1402 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. B. E. Black, J. M. Holaska, L. Levesque, B. Ossareh-Nazari, C. Gwizdek, C. Dargemont, and B. M. Paschal. NXT1 is necessary for the terminal step of Crm1-mediated nuclear export. J. Cell Biol. 152:141–155 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. K. H. Krause and M. Michalak. Calreticulin. Cell 88:439–443 (1997).

    Article  CAS  PubMed  Google Scholar 

  60. J. M. Holaska, B. E. Black, D. C. Love, J. A. Hanover, J. Leszyk, and B. M. Paschal. Calreticulin is a receptor for nuclear export. J. Cell Biol. 152:127–140 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. J. M. Holaska, B. E. Black, F. Rastinejad, and B. M. Paschal. Ca2+-dependent nuclear export mediated by calreticulin. Mol. Cell Biol. 22:6286–6297 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. B. E. Black, J. M. Holaska, F. Rastinejad, and B. M. Paschal. DNA binding domains in diverse nuclear receptors function as nuclear export signals. Curr. Biol. 11:1749–1758 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. D. B. DeFranco. Nuclear export: DNA-binding domains find a surprising partner. Curr. Biol. 11:R1036–R1037 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. R. F. Walther, C. Lamprecht, A. Ridsdale, I. Groulx, S. Lee, Y. A. Lefebvre, and R. J. Hache. Nuclear export of the glucocorticoid receptor is accelerated by cell fusion-dependent release of calreticulin. J. Biol. Chem. 278:37858–37864 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. L. Meunier, R. Mayer, M. Monsigny, and A. C. Roche. The nuclear export signal-dependent localization of oligonucleopeptides enhances the inhibition of the protein expression from a gene transcribed in cytosol. Nucleic Acids Res. 27:2730–2736 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. C. K. Chan and D. A. Jans. Using nuclear targeting signals to enhance non-viral gene transfer. Immunol. Cell Biol. 80:119–130 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. A. Subramanian, P. Ranganathan, and S. L. Diamond. Nuclear targeting peptide scaffolds for lipofection of nondividing mammalian cells. Nat. Biotechnol. 17:873–877 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. D. A. Jans, C. K. Chan, and S. Huebner. Signals mediating nuclear targeting and their regulation: application in drug delivery. Med. Res. Rev. 18:189–223 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. T. R. Kau, J. C. Way, and P. A. Silver. Nuclear transport and cancer: from mechanism to intervention. Nat. Rev. Cancer 4:106–117 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. U. M. Moll, G. Riou, and A. J. Levine. Two distinct mechanisms alter p53 in breast cancer: mutation and nuclear exclusion. Proc. Natl. Acad. Sci. U.S.A. 89:7262–7266 (1992).

    Article  CAS  PubMed  Google Scholar 

  71. M. Fabbro and B. R. Henderson. Regulation of tumor suppressors by nuclear-cytoplasmic shuttling. Exp. Cell Res. 282:59–69 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. E. Craig, Z. K. Zhang, K. P. Davies, and G. V. Kalpana. A masked NES in INI1/hSNF5 mediates hCRM1-dependent nuclear export: implications for tumorigenesis. EMBO J. 21:31–42 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. C. C. Harris and M. Hollstein. Clinical implications of the p53 tumor-suppressor gene. N. Engl. J. Med. 329:1318–1327 (1993).

    Article  CAS  PubMed  Google Scholar 

  74. G. Wurzer, W. Mosgoeller, M. Chabicovsky, C. Cerni, and J. Wesierska-Gadek. Nuclear Ras: unexpected subcellular distribution of oncogenic forms. J. Cell Biochem. 81:1–11 (2001).

    Article  PubMed  Google Scholar 

  75. K. Keeshan, T. G. Cotter, and S. L. McKenna. Bcr-Abl upregulates cytosolic p21WAF-1/CIP-1 by a phosphoinositide-3-kinase (PI3K)-independent pathway. Br. J. Haematol. 123:34–44 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. S. W. Edwards, C. M. Tan, and L. E. Limbird. Localization of G-protein-coupled receptors in health and disease. Trends Pharmacol. Sci. 21:304–308 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. H. H. Hobbs, D. W. Russell, M. S. Brown, and J. L. Goldstein. The LDL receptor locus in familial hypercholesterolemia: mutational analysis of a membrane protein. Annu. Rev. Genet. 24:133–170 (1990).

    Article  CAS  PubMed  Google Scholar 

  78. M. J. Welsh and A. E. Smith. Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell 73:1251–1254 (1993).

    Article  CAS  PubMed  Google Scholar 

  79. Y. Takenaka, T. Fukumori, T. Yoshii, N. Oka, H. Inohara, H. R. Kim, R. S. Bresalier, and A. Raz. Nuclear export of phosphorylated galectin-3 regulates its antiapoptotic activity in response to chemotherapeutic drugs. Mol. Cell Biol. 24:4395–4406 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. N. Nakamura, S. Ramaswamy, F. Vazquez, S. Signoretti, M. Loda, and W. R. Sellers. Forkhead transcription factors are critical effectors of cell death and cell cycle arrest downstream of PTEN. Mol. Cell Biol. 20:8969–8982 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. M. Karin, Y. Cao, F. R. Greten, and Z. W. Li. NF-kappaB in cancer: from innocent bystander to major culprit. Nat. Rev. Cancer 2:301–310 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. T. Henkel, U. Zabel, K. van Zee, J. M. Muller, E. Fanning, and P. A. Baeuerle. Intramolecular masking of the nuclear location signal and dimerization domain in the precursor for the p50 NF-kappa B subunit. Cell 68:1121–1133 (1992).

    Article  CAS  PubMed  Google Scholar 

  83. M. Fabbro, J. A. Rodriguez, R. Baer, and B. R. Henderson. BARD1 induces BRCA1 intranuclear foci formation by increasing RING-dependent BRCA1 nuclear import and inhibiting BRCA1 nuclear export. J. Biol. Chem. 277:21315–21324 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. J. A. Rodriguez, S. Schuchner, W. W. Au, M. Fabbro, and B. R. Henderson. Nuclear-cytoplasmic shuttling of BARD1 contributes to its proapoptotic activity and is regulated by dimerization with BRCA1. Oncogene 23:1809–1820 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. J. A. Rodriguez and B. R. Henderson. Identification of a functional nuclear export sequence in BRCA1. J. Biol. Chem. 275:38589–38596 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. X. J. Liang, D. W. Shen, S. Garfield, and M. M. Gottesman. Mislocalization of membrane proteins associated with multidrug resistance in cisplatin-resistant cancer cell lines. Cancer Res. 63:5909–5916 (2003).

    CAS  PubMed  Google Scholar 

  87. Y. H. Min, J. W. Cheong, J. Y. Kim, J. I. Eom, S. T. Lee, J. S. Hahn, Y. W. Ko, and M. H. Lee. Cytoplasmic mislocalization of p27Kip1 protein is associated with constitutive phosphorylation of Akt or protein kinase B and poor prognosis in acute myelogenous leukemia. Cancer Res. 64:5225–5231 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. E. Colombo, P. Martinelli, R. Zamponi, D. C. Shing, P. Bonetti, L. Luzi, S. Volorio, L. Bernard, G. Pruneri, M. Alcalay, and P. G. Pelicci. Delocalization and destabilization of the Arf tumor suppressor by the leukemia-associated NPM mutant. Cancer Res. 66:3044–3050 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. R. Rosin-Arbesfeld, A. Cliffe, T. Brabletz, and M. Bienz. Nuclear export of the APC tumour suppressor controls beta-catenin function in transcription. EMBO J. 22:1101–1113 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. P. Vigneri and J. Y. Wang. Induction of apoptosis in chronic myelogenous leukemia cells through nuclear entrapment of BCR-ABL tyrosine kinase. Nat. Med. 7:228–234 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. T. P. Dryja and T. Li. Molecular genetics of retinitis pigmentosa. Hum. Mol. Genet. 4 Spec No:1739–1743 (1995).

    CAS  PubMed  Google Scholar 

  92. H. Tsukaguchi, H. Matsubara, S. Taketani, Y. Mori, T. Seido, and M. Inada. Binding-, intracellular transport-, and biosynthesis-defective mutants of vasopressin type 2 receptor in patients with X-linked nephrogenic diabetes insipidus. J. Clin. Invest. 96:2043–2050 (1995).

    Article  CAS  PubMed  Google Scholar 

  93. K. D. Karpa, R. Lin, N. Kabbani, and R. Levenson. The dopamine D3 receptor interacts with itself and the truncated D3 splice variant d3nf: D3–D3nf interaction causes mislocalization of D3 receptors. Mol. Pharmacol. 58:677–683 (2000).

    CAS  PubMed  Google Scholar 

  94. R. E. Goodchild and W. T. Dauer. Mislocalization to the nuclear envelope: an effect of the dystonia-causing torsinA mutation. Proc. Natl. Acad. Sci. U.S.A. 101:847–852 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. A. Motley, M. J. Lumb, P. B. Oatey, P. R. Jennings, P. A. De Zoysa, R. J. Wanders, H. F. Tabak, and C. J. Danpure. Mammalian alanine/glyoxylate aminotransferase 1 is imported into peroxisomes via the PTS1 translocation pathway. Increased degeneracy and context specificity of the mammalian PTS1 motif and implications for the peroxisome-to-mitochondrion mistargeting of AGT in primary hyperoxaluria type 1. J. Cell Biol. 131:95–109 (1995).

    Article  CAS  PubMed  Google Scholar 

  96. G. Karan, Z. Yang, and K. Zhang. Expression of wild type and mutant ELOVL4 in cell culture: subcellular localization and cell viability. Mol. Vis. 10:248–253 (2004).

    CAS  PubMed  Google Scholar 

  97. K. M. Kirschner and K. Baltensperger. Erythropoietin promotes resistance against the Abl tyrosine kinase inhibitor imatinib (STI571) in K562 human leukemia cells. Mol. Cancer Res. 1:970–980 (2003).

    CAS  PubMed  Google Scholar 

  98. R. Rosin-Arbesfeld, F. Townsley, and M. Bienz. The APC tumour suppressor has a nuclear export function. Nature 406:1009–1012 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. D. A. Dean. Nuclear transport: an emerging opportunity for drug targeting. Adv. Drug Deliv. Rev. 55:699–702 (2003).

    Article  PubMed  CAS  Google Scholar 

  100. J. Z. Gasiorowski and D. A. Dean. Mechanisms of nuclear transport and interventions. Adv. Drug Deliv. Rev. 55:703–716 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. N. Kudo, B. Wolff, T. Sekimoto, E. P. Schreiner, Y. Yoneda, M. Yanagida, S. Horinouchi, and M. Yoshida. Leptomycin B inhibition of signal-mediated nuclear export by direct binding to CRM1. Exp. Cell Res. 242:540–547 (1998).

    Article  CAS  PubMed  Google Scholar 

  102. T. Meissner, E. Krause, and U. Vinkemeier. Ratjadone and leptomycin B block CRM1-dependent nuclear export by identical mechanisms. FEBS Lett. 576:27–30 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. M. Koster, S. Lykke-Andersen, Y. A. Elnakady, K. Gerth, P. Washausen, G. Hofle, F. Sasse, J. Kjems, and H. Hauser. Ratjadones inhibit nuclear export by blocking CRM1/exportin 1. Exp. Cell Res. 286:321–331 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. D. Daelemans, E. Afonina, J. Nilsson, G. Werner, J. Kjems, E. De Clercq, G. N. Pavlakis, and A. M. Vandamme. A synthetic HIV-1 Rev inhibitor interfering with the CRM1-mediated nuclear export. Proc. Natl. Acad. Sci. U.S.A. 99:14440–14445 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. X. Yan Liu, D. Robinson, R. A. Veach, D. Liu, S. Timmons, R. D. Collins, and J. Hawiger. Peptide-directed suppression of a pro-inflammatory cytokine response. J. Biol. Chem. 275:16774–16778 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. E. S. Newlands, G. J. Rustin, and M. H. Brampton. Phase I trial of elactocin. Br. J. Cancer 74:648–649 (1996).

    CAS  PubMed  Google Scholar 

  107. N. P. Allen, S. S. Patel, L. Huang, R. J. Chalkley, A. Burlingame, M. Lutzmann, E. C. Hurt, and M. Rexach. Deciphering networks of protein interactions at the nuclear pore complex. Mol. Cell Proteomics. 1:930–946 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. P. Csermely, T. Schnaider, C. Soti, Z. Prohaszka, and G. Nardai. The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol. Ther. 79:129–168 (1998).

    Article  CAS  PubMed  Google Scholar 

  109. M. Qiu, A. Olsen, E. Faivre, K. B. Horwitz, and C. A. Lange. Mitogen activated protein kinase regulates nuclear association of human progesterone receptors. Mol. Endocrinol. 9:9 (2003).

    Google Scholar 

  110. C. Kanwal, S. Mu, S. E. Kern, and C. S. Lim. Bidirectional on/off switch for controlled targeting of proteins to subcellular compartments. J. Control. Release 98:379–393 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. M. Fabbro, S. Schuechner, W. W. Au, and B. R. Henderson. BARD1 regulates BRCA1 apoptotic function by a mechanism involving nuclear retention. Exp. Cell Res. 298:661–673 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. H. Liu, X. Deng, Y. J. Shyu, J. J. Li, E. J. Taparowsky, and C. D. Hu. Mutual regulation of c-Jun and ATF2 by transcriptional activation and subcellular localization. EMBO J. 25:1058–1069 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. O. Hantschel, S. Wiesner, T. Guttler, C. D. Mackereth, L. L. Rix, Z. Mikes, J. Dehne, D. Gorlich, M. Sattler, and G. Superti-Furga. Structural basis for the cytoskeletal association of Bcr-Abl/c-Abl. Mol. Cell 19:461–473 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. J. G. Savory, B. Hsu, I. R. Laquian, W. Giffin, T. Reich, R. J. Hache, and Y. A. Lefebvre. Discrimination between NL1- and NL2-mediated nuclear localization of the glucocorticoid receptor. Mol. Cell Biol. 19:1025–1037 (1999).

    CAS  PubMed  Google Scholar 

  115. A. J. Saporita, Q. Zhang, N. Navai, Z. Dincer, J. Hahn, X. Cai, and Z. Wang. Identification and characterization of a ligand-regulated nuclear export signal in androgen receptor. J. Biol. Chem. 278:41998–42005 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. H. Li, M. L. Fidler, and C. S. Lim. Effect of initial subcellular localization of progesterone receptor on import kinetics and transcriptional activity. Mol. Pharm. 2:509–518 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. D. A. Freedman, C. B. Epstein, J. C. Roth, and A. J. Levine. A genetic approach to mapping the p53 binding site in the MDM2 protein. Mol. Med. 3:248–259 (1997).

    CAS  PubMed  Google Scholar 

  118. G. Shaulsky, N. Goldfinger, A. Ben-Ze’ev, and V. Rotter. Nuclear accumulation of p53 protein is mediated by several nuclear localization signals and plays a role in tumorigenesis. Mol. Cell Biol. 10:6565–6577 (1990).

    CAS  PubMed  Google Scholar 

  119. W. B. Pratt, U. Gehring, and D. O. Toft. Molecular chaperoning of steroid hormone receptors. EXS 77:79–95 (1996).

    CAS  PubMed  Google Scholar 

  120. W. B. Pratt and D. O. Toft. Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr. Rev. 18:306–360 (1997).

    Article  CAS  PubMed  Google Scholar 

  121. W. B. Pratt and D. O. Toft. Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp. Biol. Medicine (Maywood) 228:111–133 (2003).

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NIH DK070060 and by the University of Utah Funding Incentive Seed Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol S. Lim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, J.R., Kakar, M. & Lim, C.S. Controlling Protein Compartmentalization to Overcome Disease. Pharm Res 24, 17–27 (2007). https://doi.org/10.1007/s11095-006-9133-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9133-z

Key words

Navigation