Skip to main content
Log in

Sorbitol Crystallization Can Lead to Protein Aggregation in Frozen Protein Formulations

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

This work examines the cause of aggregation of an Fc-fusion protein formulated in sorbitol upon frozen storage for extended periods of time at −30°C.

Materials and Methods

We designed sub-ambient differential scanning calorimetry (DSC) experiments to capture the effects of long-term frozen storage. The physical stability of formulation samples was monitored by size exclusion high performance liquid chromatography (SE-HPLC).

Results

DSC analysis of non-frozen samples shows the expected glass transitions (Tg′) at −45°C for samples in sorbitol and at −32°C in sucrose. In time course studies where sorbitol formulations were stored at −30°C and analyzed by DSC without thawing, two endothermic transitions were observed: a melting endotherm at −20°C dissipated over time, and a second endotherm at −8°C was seen after approximately 2 weeks and persisted in all later time points. Protein aggregation was only seen in the samples formulated in sorbitol and stored at −30°C, correlating aggregation with the aforementioned melts.

Conclusions

The observed melts are characteristic of crystalline substances and suggest that the sorbitol crystallizes over time. During freezing, the excipient must remain in the same phase as the protein to ensure protein stability. By crystallizing, the sorbitol is phase-separated from the protein, which leads to protein aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

10 mM sodium acetate, pH 4.0 with 300 mM sorbitol:

(A4S)

10 mM sodium acetate, pH 4.0 with 320 mM sucrose:

(A4Su)

10 mM sodium acetate, pH 5.0 with 300 mM sorbitol:

(A5S)

differential scanning calorimetry:

(DSC)

fragment crystallizes easily:

(Fc)

glass transition temperature:

(Tg′)

size exclusion high performance liquid chromatography:

(SE-HPLC)

References

  1. T. W. Randolph. Phase separation of excipients during lyophilization: effects on protein stability. J. Pharm. Sci. 86:1198–1203 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. P. L. Privalov. Cold denaturation of proteins. Crit. Rev. Biochem. Mol. Biol. 25:281–305 (1990).

    CAS  PubMed  Google Scholar 

  3. F. Franks. Protein destabilization at low temperatures. Adv. Protein Chem. 46:105–139 (1995).

    CAS  PubMed  Google Scholar 

  4. U. Hansonn. Aggregation of human immunoglobulin G upon freezing. Acta Chem. Scand. 22:483–489 (1968).

    Article  Google Scholar 

  5. J. F. Carpenter, J. H. Crowe. The mechanism of cryoprotection of proteins by solutes. Cryobiology 25:244–255 (1988).

    Article  CAS  PubMed  Google Scholar 

  6. F. Franks. Solid aqueous solutions. Pure and Appl. Chem. 65:2527–2537 (1993).

    CAS  Google Scholar 

  7. L. L. Chang, D. Shepherd, J. Sun, D. Ouellette, K. L. Grant, X. C. Tang, and M. J. Pikal. Mechanism of protein stabilization by sugars during freeze-drying and storage: native structure preservation, specific interaction, and/or immobilization in a glassy matrix? J. Pharm. Sci. 94:1427–1444 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. F. Franks. Freeze-drying: from empiricism to predictability. The significance of glass transitions. Dev. Biol. Stand. 74(discussion 19):9–18 (1992).

    CAS  PubMed  Google Scholar 

  9. F. Franks, R. H. M. Hatley, and S. F. Mathias. Material science and the production of shelf-stable pharmaceuticals. BioPharm. 3:26–30 (1991).

    Google Scholar 

  10. M. Pikal. Freeze drying of proteins. In J. Cleland, Langer, R. (ed.), Stability, Formulation and Delivery of Peptides and Proteins, ACS Symposium Series, American Chemical Society, 1994, pp. 120–133.

  11. J. F. Carpenter, S. J. Prestrelski, and T. Arakawa. Separation of freezing- and drying-induced denaturation of lyophilized proteins using stress-specific stabilization I. Enzyme activity and calorimetric studies. Arch. Biochem. Biophys. 303:456–464 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. K. Izutsu, S. Yoshioka, and T. Terao. Decreased protein-stabilizing effects of cryoprotectants due to crystallization. Pharm. Res. 10:1232–1237 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. F. Franks. Improved freeze drying: an analysis of the basic scientific principles. Process Biochem. 24:3–6 (1989).

    Google Scholar 

  14. L. van Den Berg and D. Rose. Effect of freezing on the pH and composition of sodium and potassium phosphate solutions; the reciprocal system KH2PO4–Na2–HPO4–H2O. Arch. Biochem. Biophys. 81:319–329 (1959).

    Article  Google Scholar 

  15. G. B. Strambini and E. Gabellieri. Proteins in frozen solutions: evidence of ice-induced partial unfolding. Biophys. J. 70:971–976 (1996).

    CAS  PubMed  Google Scholar 

  16. E. Gabellieri and G. B. Strambini. Perturbation of protein tertiary structure in frozen solutions revealed by 1-anilino-8-naphthalene sulfonate fluorescence. Biophys. J. 85:3214–3220 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. L. Kreilgaard, L. S. Jones, T. W. Randolph, S. Frokjaer, J. M. Flink, M. C. Manning, and J. F. Carpenter. Effect of Tween 20 on freeze-thawing- and agitation-induced aggregation of recombinant human factor XIII. J. Pharm. Sci. 87:1597—1603 (1998).

    CAS  PubMed  Google Scholar 

  18. B. S. Chang, B. S. Kendrick, and J. F. Carpenter. Surface-induced denaturation of proteins during freezing and its inhibition by surfactants. J. Pharm. Sci. 85:1325–1330 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. J. C. Lee and S. N Timasheff. The stabilization of proteins by sucrose. J. Biol. Chem. 256:7193–7201 (1981).

    CAS  PubMed  Google Scholar 

  20. R. Rowe, P. Sheskey, P. Weller, R. Rowe, P. Sheskey, and P. Weller. In R. C. Rowe. (ed.), Handbook of Pharmaceutical Excipients, 4th ed., American Pharmaceutical Association.

  21. H. Levine and L. Slade. Thermomechanical properties of small-carbohydrate–water glasses and 'rubbers'. J. Chem. Soc., Faraday Trans. 84:2619–2633 (1988).

    Article  CAS  Google Scholar 

  22. H. Costantino. Excipients for Use in Lyophilized Pharmaceutical Peptide, Protein and other Bioproducts. In H. Constantino, Pikal, M. (ed), Lyophilization of Biopharmaceuticals, AAPS, Arlington, 2004, pp. 139–228.

    Google Scholar 

  23. L. L. Chang, D. Shepherd, J. Sun, X. C. Tang, and M. J. Pikal. Effect of sorbitol and residual moisture on the stability of lyophilized antibodies: Implications for the mechanism of protein stabilization in the solid state. J. Pharm. Sci. 94:1445–1455 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. L. M. Her, M. Deras, and S. L. Nail. Electrolyte-induced changes in glass transition temperatures of freeze-concentrated solutes. Pharm. Res. 12:768–772 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. K. Izutsu, and S. Kojima. Freeze-concentration separates proteins and polymer excipients into different amorphous phases. Pharm. Res. 17:1316–1322 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. S. Chongprasert, S. A. Knopp, and S. L. Nail. Characterization of frozen solutions of glycine. J. Pharm. Sci. 90:1720–1728 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. K. Izutsu, S. Yoshioka, S. Kojima, T. W. Randolph, and J. F. Carpenter. Effects of sugars and polymers on crystallization of poly(ethylene glycol) in frozen solutions: phase separation between incompatible polymers. Pharm. Res. 13:1393–1400 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. R. K. Cavatur, N. M. Vemuri, A. Pyne, Z. Chrzan, D. Toledo-Velasquez, and R. Suryanarayanan. Crystallization behavior of mannitol in frozen aqueous solutions. Pharm. Res. 19:894–900 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. K. Izutsu, S. Yoshioka, and T. Terao. Effect of mannitol crystallinity on the stabilization of enzymes during freeze-drying. Chem. Pharm. Bull. 42:5–8 (1994).

    CAS  PubMed  Google Scholar 

  30. J. K. Guillory. Generation of polymorphs, hydrates, solvates and amorphous solids. In H. G. Brittan (ed), Polymorphs in Pharmaceutical Solids. Marcel Decker, New York, 1999, pp. 183–226.

    Google Scholar 

  31. X. Liao, R. Krishnamurthy, and R. Suryanarayanan. Influence of the active pharmaceutical ingredient concentration on the physical state of mannitol-implications in freeze-drying. Pharm. Res. 22:1978–1985 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. B. Chang, and C. Randall. Use of subambient thermal analysis to optimize protein lyophilization. Cryobiology 29:632–656 (1992).

    Article  CAS  Google Scholar 

  33. L. Yu, S. Reutzel-Edens, and C. Mitchell. Crystallization and polymorphism of conformationally flexible molecules: problems, patterns and strategies. Org. Process Res. Dev. 4:396–402 (2000).

    Article  CAS  Google Scholar 

  34. G. A. Jeffrey and H. S. Kim. Conformation of the Alditols. Carbohydr. Res. 14:207–216 (1970).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Michael Treuheit, Dr. Vasumathi Dharmavaram, Alison Butler, Priti Parmar, Dr. Mary Elizabeth Wimer, Dr. David Brems and Dr. Susan Hershenson for a critical reading of the manuscript and support.

Deirdre Murphy Piedmonte and Christie Summers contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gayathri Ratnaswamy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piedmonte, D.M., Summers, C., McAuley, A. et al. Sorbitol Crystallization Can Lead to Protein Aggregation in Frozen Protein Formulations. Pharm Res 24, 136–146 (2007). https://doi.org/10.1007/s11095-006-9131-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9131-1

Key words

Navigation