Skip to main content

Advertisement

Log in

Aqueous-Soluble, Non-Reversible Lipid Conjugate of Salmon Calcitonin: Synthesis, Characterization and In Vivo Activity

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

A novel, non-reversible, aqueous-based lipidization strategy with palmitic acid as a model lipid was evaluated for conjugation with salmon calcitonin (sCT).

Materials and Methods

A water-soluble ε-maleimido lysine derivative of palmitic acid was synthesized from reaction of palmitic acid N-succinimidyl ester and ε-maleimido lysine. The latter was generated from reaction of α-Boc-lysine and methylpyrrolecarboxylate, with subsequent deprotection of the Boc group. The palmitic derivative was further conjugated with sCT via a thio-ether bond to produce Mal-sCT in aqueous solution. The identity and purity of Mal-sCT was confirmed by Electrospray Ionisation Mass spectrometry (ESI–MS) and HPLC.

Results

Yield of Mal-sCT was 83%. Dynamic light scattering and circular dichroism data suggested that Mal-sCT presented as a stable helical structure in aqueous solutions of varying polarity, with a propensity to aggregate at concentrations above 11 μM. Cellular uptake of Mal-sCT was twice that of sCT in the Caco-2 cell model, and the conjugate was more resistant to liver enzyme degradation. Mal-sCT exhibited comparable hypocalcemic activity to sCT when administered subcutaneously in the rat model at sCT equivalent dose of 0.114 mg/kg. Peroral Mal-sCT, however, produced variability in therapeutic outcome. While four out of six rats did not respond following intragastric gavage with Mal-sCT, two rats showed significantly suppressed plasma calcium levels (∼60% of baseline) for up to 10 h.

Conclusion

A novel non-reversible, water-soluble lipid conjugate of sCT was successfully synthesized that showed (1) different aggregation behavior and secondary structure, (2) improved enzymatic stability and cellular uptake, and (3) comparable hypocalcemic activity in vivo compared to sCT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

APCI:

Atmospheric Pressure Chemical Ionization

BA:

Bioavailability

ESI:

Electrospray Ionisation

MS:

Mass spectrometry

TCEP:

tris(2-carboxyethyl)phosphine

sCT:

salmon calcitonin

References

  1. M. Ellmerer, M. Hamilton-Wessler, S. P. Kim, M. K. Dea, E. Kirkman, A. Perianayagam, J. Markussen, and R. N. Bergman. Mechanism of action in dogs of slow-acting insulin analog O346. J. Clin. Endocrinol. Metab. 88:2256–2262 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. S. Havelund, A. Plum, U. Ribel, I. Jonassen, A. Volund, J. Markussen, and P. Kurtzhals. The mechanism of protraction of insulin detemir, a long-acting, acylated analog of human insulin. Pharm. Res. 21:1498–1504 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. J. Wang and W. C. Shen. Gastric retention and stability of lipidized Bowman–Birk protease inhibitor in mice. Int. J. Pharm. 204:111–116 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. F. Delie, P. Couvreur, D. Nisato, J. B. Michel, F. Puisieux, and Y. Letourneux. Synthesis and in vitro study of a diglyceride prodrug of a peptide. Pharm. Res. 11:1082–1087 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. J. Markussen, S. Havelund, P. Kurtzhals, A. S. Andersen, J. Halstrom, E. Hasselager, U. D. Larsen, U. Ribel, L. Schaffer, K. Vad, and I. Jonassen. Soluble, fatty acid acylated insulins bind to albumin and show protracted action in pigs. Diabetologia 39: 281–288 (1996).

    CAS  PubMed  Google Scholar 

  6. A. V. Kabanov, A. V. Ovcharenko, N. S. Melik-Hubarov, A. I. Bannikov, V. Alakhov, V. I. Kiselev, P. G. Sveshnikov, O. I. Kiselev, A. V. Levashov, and E. S. Severin. Fatty acid acylated antibodies against virus suppress its reproduction in cells. FEBS Lett. 250:238–240 (1989).

    Article  CAS  PubMed  Google Scholar 

  7. H. Asada, T. Douen, Y. Mizokoshi, T. Fujita, M. Murakami, A. Yamamoto, and S. Muranishi. Stability of acyl derivatives of insulin in the small intestine: relative importance of insulin association characteristics in aqueous solution. Pharm. Res. 11:1115–1120 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. M. Hashimoto, K. Takada, Y. Kiso, and S. Muranishi. Synthesis of palmitoyl derivatives of insulin and their biological activities. Pharm. Res. 6:171–176 (1989).

    Article  CAS  PubMed  Google Scholar 

  9. H. M. Ekrami, A. R. Kennedy, and W. C. Shen. Water-soluble fatty acid derivatives as acylating agents for reversible lipidization of polypeptides. FEBS Lett. 371:283–286 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. J. Wang, D. Shen, and W. C. Shen. Preparation, purification, and characterization of a reversibly lipidized desmopressin with potentiated anti-diuretic activity. Pharm. Res. 16:1674–1679 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. J. Wang, D. Wu, and W. C. Shen. Structure–activity relationship of reversibly lipidized peptides: studies of fatty acid–desmopressin conjugates. Pharm. Res. 19:609–614 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. J. Wang, D. Chow, H. Heiati, and W. C. Shen. Reversible lipidization for the oral delivery of salmon calcitonin. J. Control. Release 88:369–380 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. L. Yuan, J. Wang, and W. C. Shen. Reversible lipidization prolongs the pharmacological effect, plasma duration, and liver retention of octreotide. Pharm. Res. 22:220–227 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. J. H. Cort, O. Schuck, J. Stribrna, J. Skopkova, K. Jost, and J. L. Mulder. Role of the disulfide bridge and the C-terminal tripeptide in the antidiuretic action of vasopressin in man and the rat. Kidney Int. 8:292–302 (1975).

    CAS  PubMed  Google Scholar 

  15. S. Gazal, G. Gelerman, O. Ziv, O. Karpov, P. Litman, M. Bracha, M. Afargan, and C. Gilon. Human somatostatin receptor specificity of backbone-cyclic analogues containing novel sulfur building units. J. Med. Chem. 45:1665–1671 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. M. Afargan, E. T. Janson, G. Gelerman, R. Rosenfeld, O. Ziv, O. Karpov, A. Wolf, M. Bracha, D. Shohat, G. Liapakis, C. Gilon, A. Hoffman, D. Stephensky, and K. Oberg. Novel long-acting somatostatin analog with endocrine selectivity: potent suppression of growth hormone but not of insulin. Endocrinology 142:477–486 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. R. C. Orlowski, R. M. Epand, and A. R. Stafford. Biologically potent analogues of salmon calcitonin which do not contain an N-terminal disulfide-bridged ring structure. Eur. J. Biochem. 162:399–402 (1987).

    Article  CAS  PubMed  Google Scholar 

  18. Y. Wang, H. Dou, C. Cao, N. Zhang, J. Ma, J. Mao, and H. Wu. Solution structure and biological activity of recombinant salmon calcitonin S-sulfonated analog. Biochem. Biophys. Res. Commun. 306:582–589 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. C. Peters, A. Wolf, M. Wagner, J. Kuhlmann, and H. Waldmann. The cholesterol membrane anchor of the Hedgehog protein confers stable membrane association to lipid-modified proteins. Proc. Natl. Acad. Sci. U. S. A. 101:8531–8536 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. J. T. Elliott and G. D. Prestwich. Maleimide-functionalized lipids that anchor polypeptides to lipid bilayers and membranes. Bioconjug. Chem. 11:832–841 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. S. Lee, K. Kim, T. S. Kumar, J. Lee, S. K. Kim, D. Y. Lee, Y. K. Lee, and Y. Byun. Synthesis and biological properties of insulin-deoxycholic acid chemical conjugates. Bioconjug. Chem. 16: 615–620 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. O. Keller and J. Rudinger. Preparation and some properties of maleimido acids and maleoyl derivatives of peptides. Helv. Chim. Acta 58:531–541 (1975).

    Article  CAS  PubMed  Google Scholar 

  23. K. Wakisaka, Y. Arano, T. Uezono, H. Akizawa, M. Ono, K. Kawai, Y. Ohomomo, M. Nakayama, and H. Saji. A novel radioiodination reagent for protein radiopharmaceuticals with L-lysine as a plasma-stable metabolizable linkage to liberate m-iodohippuric acid after lysosomal proteolysis. J. Med. Chem. 40:2643–2652 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. S. Mansoor, Y. S. Youn, and K. C. Lee. Oral delivery of mono-PEGylated sCT (Lys18) in rats: regional difference in stability and hypocalcemic effect. Pharm. Dev. Technol. 10:389–396 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. G. T. Hermanson. Bioconjugate Techniques, Academic, San Diego, California, 1996.

    Google Scholar 

  26. Z. Ma and L. Y. Lim. Uptake of chitosan and associated insulin in Caco-2 cell monolayers: a comparison between chitosan molecules and chitosan nanoparticles. Pharm. Res. 20:1812–1819 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. P. J. Sinko, C. L. Smith, L. T. McWhorter, W. Stern, E. Wagner, and J. P. Gilligan. Utility of pharmacodynamic measures for assessing the oral bioavailability of peptides. 1. administration of recombinant salmon calcitonin in rats. J. Pharm. Sci. 84:13 74–1378 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. J. C. Van Loon. Analytical Atomic Absorption Spectroscopy: Selected Methods, Academic, New York, 1980.

    Google Scholar 

  29. T. Uchiyama, A. Kotani, H. Tatsumi, T. Kishida, A. Okamoto, N. Okada, M. Murakami, T. Fujita, Y. Fujiwara, Y. Kiso, S. Muranishi, and A. Yamamoto. Development of novel lipophilic derivatives of DADLE (leucine enkephalin analogue): intestinal permeability characateristics of DADLE derivatives in rats. Pharm. Res. 17:1461–1467 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Y. J. Tsai, A. Rottero, D. D. Chow, K. J. Hwang, V. H. Lee, G. Zhu, and K. K. Chan. Synthesis and purification of NB1-palmitoyl insulin. J. Pharm. Sci. 86:1264–1268 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. M. Sukumar, S. M. Storms, and M. R. De Felippis. Non-native intermediate conformational states of human growth hormone in the presence of organic solvents. Pharm. Res. 22:789–796 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. H. Sah. Protein behavior at the water/methylene chloride interface. J. Pharm. Sci. 88:1320–1325 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. K. Nishiki, S. Tsuruoka, M. Wakaumi, H. Yamamoto, A. Koyama, and A. Fujimura. Dosing time-dependent variation in the hypocalcemic effect of calcitonin in rat. Eur. J. Pharmacol. 460:171–175 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. T. Buclin, M. Cosma Rochat, P. Burckhardt, M. Azria, and M. Attinger. Bioavailability and biological efficacy of a new oral formulation of salmon calcitonin in healthy volunteers. J. Bone Miner. Res. 17:1478–1485 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. H. B. Olsen and N. C. Kaarsholm. Structural effects of protein lipidation as revealed by LysB29-myristoyl, des(B30) insulin. Biochemistry 39:11893–11900 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Y. Hee Lee, G. D. Leesman, V. Makhey, H. Yu, P. Hu, B. Perry, J. P. Sutyak, E. J. Wagner, L. M. Falzone, W. Stern, and P. J. Sinko. Regional oral absorption, hepatic first-pass effect, and non-linear disposition of salmon calcitonin in beagle dogs. Eur. J. Pharm. Biopharm. 50:205–211 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. E. Yodoya, K. Uemura, T. Tenma, T. Fujita, M. Murakami, A. Yamamoto, and S. Muranishi. Enhanced permeability of tetragastrin across the rat intestinal membrane and its reduced degradation by acylation with various fatty acids. J. Pharmacol. Exp. Ther. 271:1509–1513 (1994).

    CAS  PubMed  Google Scholar 

  38. H. Chen and R. Langer. Oral particulate delivery: status and future trends. Adv. Drug Deliv. Rev. 34:339–350 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Y. V. Frenkel, A. D. Clark, Jr., K. Das, Y. H. Wang, P. J. Lewi, P. A. Janssen, and E. Arnold. Concentration and pH dependent aggregation of hydrophobic drug molecules and relevance to oral bioavailability. J. Med. Chem. 48:1974–1983 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. E. C. Lavelle, S. Sharif, N. W. Thomas, J. Holland, and S. S. Davis. The importance of gastrointestinal uptake of particles in the design of oral delivery systems. Adv. Drug Deliv. Rev. 18:5–22 (1995).

    Article  CAS  Google Scholar 

  41. G. Levy. Impact of pharmacodynamic variability on drug delivery(1). Adv. Drug Deliv. Rev. 33:201–206 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. H. Mei, C. Yu, and K. K. Chan. NB1-C16-insulin: site-specific synthesis, purification, and biological activity. Pharm. Res. 16:1680–1686 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. I. Zofkova, K. Zajickova, and M. Hill. Postmenopausal serum androstenedione levels are associated with the calcitonin receptor gene polymorphism T1377c. A pilot study. J. Endocrinol. Investig. 27:442–444 (2004).

    CAS  Google Scholar 

  44. V. Braga, A. Sangalli, G. Malerba, M. Mottes, S. Mirandola, D. Gatti, M. Rossini, M. Zamboni, and S. Adami. Relationship among VDR (BsmI and FokI), COLIA1, and CTR polymorphisms with bone mass, bone turnover markers, and sex hormones in men. Calcif. Tissue Int. 70:457–462 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. H. Nakamuta, R. C. Orlowski, and R. M. Epand. Evidence for calcitonin receptor heterogeneity: binding studies with nonhelical analogs. Endocrinology 127:163–169 (1990).

    Article  CAS  PubMed  Google Scholar 

  46. J. M. Hilton, S. Y. Chai, and P. M. Sexton. In vitro autoradiographic localization of the calcitonin receptor isoforms, C1a and C1b, in rat brain. Neuroscience 69:1223–1237 (1995).

    Article  CAS  PubMed  Google Scholar 

  47. P. M. Sexton, S. Houssami, J. M. Hilton, L. M. O’Keeffe, R. J. Center, M. T. Gillespie, P. Darcy, and D. M. Findlay. Identification of brain isoforms of the rat calcitonin receptor. Mol. Endocrinol. 7:815–821 (1993).

    Article  CAS  PubMed  Google Scholar 

  48. M. Ikegame, M. Rakopoulos, H. Zhou, S. Houssami, T. J. Martin, J. M. Moseley, and D. M. Findlay. Calcitonin receptor isoforms in mouse and rat osteoclasts. J. Bone Miner. Res. 10: 59–65 (1995).

    Article  CAS  PubMed  Google Scholar 

  49. G. Siligardi, B. Samori, S. Melandri, M. Visconti, and A. F. Drake. Correlations between biological activities and conformational properties for human, salmon, eel, porcine calcitonins and Elcatonin elucidated by CD spectroscopy. Eur. J. Biochem. 221: 1117–1125 (1994).

    Article  CAS  PubMed  Google Scholar 

  50. S. Houssami, D. M. Findlay, C. L. Brady, T. J. Martin, R. M. Epand, E. E. Moore, E. Murayama, T. Tamura, R. C. Orlowski, and P. M. Sexton. Divergent structural requirements exist for calcitonin receptor binding specificity and adenylate cyclase activation. Mol. Pharmacol. 47:798–809 (1995).

    CAS  PubMed  Google Scholar 

  51. A. Motta, A. Pastore, N. A. Goud, and M. A. Castiglione Morelli. Solution conformation of salmon calcitonin in sodium dodecyl sulfate micelles as determined by two-dimensional NMR and distance geometry calculations. Biochemistry 30:10444–10450 (1991).

    Article  CAS  PubMed  Google Scholar 

  52. M. O. Goodarzi, K. D. Taylor, X. Guo, M. J. Quinones, J. Cui, X. Li, T. Hang, H. Yang, E. Holmes, W. A. Hsueh, J. Olefsky, and J. I. Rotter. Variation in the gene for muscle-specific AMP deaminase is associated with insulin clearance, a highly heritable trait. Diabetes 54:1222–1227 (2005).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by a National University of Singapore Academic Research Fund (R148-000-045-112). Weiqiang Cheng is grateful to the National University of Singapore for financial support of his graduate studies. The authors thank Dr. J. Sivaraman (Department of Biological Sciences, NUS) for his help with the DLS experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee-Yong Lim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, W., Satyanarayanajois, S. & Lim, LY. Aqueous-Soluble, Non-Reversible Lipid Conjugate of Salmon Calcitonin: Synthesis, Characterization and In Vivo Activity. Pharm Res 24, 99–110 (2007). https://doi.org/10.1007/s11095-006-9128-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9128-9

Key words

Navigation