A Modern View of Excipient Effects on Bioequivalence: Case Study of Sorbitol

Abstract

Purpose

To examine the effect of common excipients such as sugars (sorbitol versus sucrose) on bioequivalence between pharmaceutical formulations, using ranitidine and metoprolol as model drugs.

Methods

Two single-dose, replicated, crossover studies were first conducted in healthy volunteers (N = 20 each) to compare the effect of 5 Gm of sorbitol and sucrose on bioequivalence of 150 mg ranitidine or 50 mg metoprolol in aqueous solution, followed by a single-dose, nonreplicated, crossover study (N = 24) to determine the threshold of sorbitol effect on bioequivalence of 150 mg ranitidine in solution.

Results

Ranitidine Cmax and AUC(0–∞) were decreased by ∼50% and 45%, respectively, in the presence of sorbitol versus sucrose. Similarly, sorbitol reduced metoprolol Cmax by 23% but had no significant effect on AUC(0–∞). An appreciable subject-by-formulation interaction was found for ranitidine Cmax and AUC(0–∞), as well as metoprolol Cmax. Sorbitol decreased the systemic exposure of ranitidine in a dose-dependent manner and affected bioequivalence at a level of 1.25 Gm or greater.

Conclusions

As exemplified by sorbitol, some common excipients have unexpected effect on bioavailability/bioequivalence, depending on the pharmacokinetic characteristics of the drug, as well as the type and amount of the excipient present in the formulation. More research is warranted to examine other ‘common’ excipients that may have unintended influence on bioavailability/bioequivalence.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    G. L. Amidon, H. Lennernas, V. P. Shah, and J. R. Crison. A theoretical basis for abiopharmaceutics drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res. 12:413–420 (1995).

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    U.S. Food and Drug Administration, Center for Drug Evaluation and Research. Guidance for Industry: Waiver of In Vivo Bioavailability and Bioequivalence Studies for Immediate Release Solid Oral Dosage Forms Based on a Biopharmaceutics Classification System, Office of Training and Communications, Division of Communications Management, Drug Information Branch, HFD-210, Rockville Maryland 20857, August 2000.

  3. 3.

    D. M. Woodcock, S. Jefferson, M. E. Linsenmeyer, P. J. Crowther, G. M. Chojnowski, B. Williams, and I. Bertoncello. Reversal of the multi-drug resistance phenotype with Cremophor EL, a common vehicle for water-insoluble vitamins and drugs. Cancer Res. 50:4199–4203 (1990).

    CAS  PubMed  Google Scholar 

  4. 4.

    A. R. Fassihi, R. Dowse, and S. S. D. Robertson. Influence of sorbitol solution on the bioavailability of theophylline. Int. J. Pharm. 72:175–178 (1991).

    CAS  Article  Google Scholar 

  5. 5.

    K. M. Koch, A. F. Parr, J. J. Tomlinson, E. P. Sandefer, G. A. Digenis, K. H. Donn, and J. R. Powell. Effect of sodium acid pyrophosphate on ranitidine bioavailability and gastrointestinal transit time. Pharm. Res. 10:1027–1030 (1993).

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    D. A. Adkin, S. S. Davis, R. A. Sparrow, P. D. Huckle, A. J. Philips, and I. R. Wilding. The effects of pharmaceutical excipients on small intestinal transit. Br. J. Clin. Pharmacol. 39:381–387 (1995).

    CAS  PubMed  Google Scholar 

  7. 7.

    P. P. Constantinides. Lipid microemulsions for improving drug dissolution and oral absorption: physical and biopharmaceutical aspects. Pharm. Res. 12:1561–1572 (1995).

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    D. A. Adkin, S. S. Davis, R. A. Sparrow, P. D. Huckle, and I. R. Wilding. The effect of mannitol on the oral bioavailability of cimetidine. J. Pharm. Sci. 84:1405–1409 (1995).

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    R. A. Rajewski and V. J. Stella. Pharmaceutical applications of cyclodextrins. 2. In vivo drug delivery. J. Pharm. Sci. 85:1142–1169 (1996).

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    L. Yu, A. Bridgers, J. Polli, A. Vickers, S. Long, A. Roy, R. Winnike, and M. Coffin. Vitamin E-TPGS increases absorption flux of an HIV protease inhibitor by enhancing its solubility and permeability. Pharm. Res. 16:1812–1817 (1999).

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    B. J. Aungst. Intestinal permeation enhancers. J. Pharm. Sci. 89:429–442 (2000).

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    A. Bernkop-Schnurch. Chitosan and its derivatives: potential excipients for peroral peptide delivery systems. Int. J. Pharm. 194:1–13 (2000).

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    A. Bernkop-Schnurch and C. E. Kast. Chemically modified chitosans as enzyme inhibitors. Adv. Drug Deliv. Rev. 52:127–137 (2001).

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    A. W. Basit, F. Podczeck, J. M. Newton, W. A. Waddington, P. J. Ell, and L. F. Lacey. Influence of polyethylene glycol 400 on the gastrointestinal absorption of ranitidine. Pharm. Res. 19:1368–1374 (2002).

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    M. Martin-Facklam, J. Burhenne, R. Ding, R. Fricker, G. Mikus, I. Walter-Sack, et al. Dose-dependent increase of saquinavir bioavailability by the pharmaceutic aid Cremorphor EL. Br. J. Clin. Pharmacol. 53:576–581 (2002).

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Y. Tayrouz, R. Ding, J. Burhenne, K. D. Riedel, J. Weiss, T. Hoppe-Tichy, W. E. Haefeli, and G. Mikus. Pharmacokinetic and pharmaceutic interaction between digoxin and Cremophor RH40. Clin. Pharmacol. Ther. 73:397–405 (2003).

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    C. Wandel, R. Kim, and M. Stein. “Inactive” excipients such as Cremophor can affect in vivo drug disposition. Clin. Pharmacol. Ther. 73:394–396 (2003).

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    M.-L. Chen and L. J. Lesko. Individual bioequivalence revisited. Clin. Pharmacokinet. 40:701–706 (2001).

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    D. Farthing, K. L. R. Brouwer, I. Fakhry, and D. Sica. Solid-phase extraction and determination of ranitidine in human plasma by a high-performance liquid chromatographic method utilizing midbore chromatography. J. Chromatogr. B. 688:350–353 (1997).

    CAS  Google Scholar 

  20. 20.

    B. Mistry, J. Leslie, and N. E. Eddington. A sensitive assay of metoprolol and its metabolite α-hydroxy metoprolol in human plasma and determination of dextromethorphan and its metabolite dextrorphan in urine with high performance liquid chromatography and fluorometric detection. J. Pharm. Biomed. Anal. 16:1041–1049 (1998).

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    D. J. Schuirmann. A comparison of the two one-sided tests procedure and the power approach for assessing the equivalence of average bioavailability. J. Pharmacokinet. Biopharm. 15:657–680 (1987).

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    U.S. Food and Drug Administration, Center for Drug Evaluation and Research. Guidance for Industry: Statistical Approaches to Establishing Bioequivalence, Office of Training and Communications, Division of Communications Management, Drug Information Branch, HFD-210, Rockville Maryland 20857, January 2001.

  23. 23.

    M.-L. Chen, R. Patnaik, W. W. Hauck, D. J. Schuirmann, T. Hyslop, and R. L. Williams. An individual bioequivalence criterion: regulatory considerations. Stat. Med. 19:2821–2842 (2000).

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    W. W. Hauck, T. Hyslop, M.-L. Chen, R. N. Patnaik, D. J. Schuirmann, R. L. Williams, and FDA Population/Individual Bioequivalence Working Group. Subject-by-formulation interaction in bioequivalence: conceptual and statistical issues. Pharm. Res. 17:375–380 (2000).

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    A. N. Wick, M. C. Almen, and L. Joseph. Metabolism of sorbitol. J. Am. Pharm. Assoc. 40:542–544 (1951).

    CAS  Google Scholar 

  26. 26.

    J. D. Cryboski. Diarrhea from dietetic candies. N. Engl. J. Med. 275:718 (1966).

    Article  Google Scholar 

  27. 27.

    J. S. Hyams. Chronic abdominal pain caused by sorbitol malabsorption. J. Pediatr. 100:772–773 (1982).

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    R. E. Hill and K. R. Kamath. “Pink” diarrhea. Med. J. Aust. 1:387–389 (1982).

    CAS  PubMed  Google Scholar 

  29. 29.

    N. K. Jain, D. B. Rosenberg, M. J. Ulahannan, M. J. Glasser, and C. S. Pitchumoni. Sorbitol intolerance in adults. Am. J. Gastroenterol. 80:678–681 (1985).

    CAS  PubMed  Google Scholar 

  30. 30.

    J. S. Hyams. Sorbitol intolerance: an unappreciated cause of functional gastrointestinal complaints. Gastroenterol. 84:30–33 (1983).

    CAS  Google Scholar 

  31. 31.

    D. B. Rosenberg, N. K. Jain, M. J. Ulahannan, et al. Sorbitol intolerance in adults and its relationship to lactose intolerance. Gastroenterol. 86:1356 (1984).

    Google Scholar 

  32. 32.

    N. K. Jain, V. P. Patel, and C. S. Pitchumoni. Sorbitol intolerance in adults: prevalence and pathogenesis on two continents. J. Clin. Gastroenterol. 9:317–319 (1987).

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    M. S. Badiga, N. K. Jain, C. Casanova, and C. S. Pitchumoni. Diarrhea in diabetics: the role of sorbitol. J. Am. Coll. Nutr. 9:578–582 (1990).

    CAS  PubMed  Google Scholar 

  34. 34.

    D. Mishkin, L. Sablauskas, M. Yalovsky, and S. Mishkin. Fructose and sorbitol malabsorption in ambulatory patients with functional dyspepsia: comparison with lactose maldigestion/malabsorption. Dig. Dis. Sci. 42:2591–2598 (1997).

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    M. M. Smith, M. Davis, F. I. Chasalow, and F. Lifshitz. Carbohydrate absorption from fruit juice in young children. Pediatrics 95:340–344 (1995).

    CAS  PubMed  Google Scholar 

  36. 36.

    T. Nobigrot, F. I. Chasalow, and F. Lifshitz. Carbohydrate absorption from one serving of fruit juice in young children: age and carbohydrate composition effects. J. Am. Coll. Nutr. 16:152–158 (1997).

    CAS  PubMed  Google Scholar 

  37. 37.

    M. Marvola, A. Reinikainen, M. L. Heliovaara, and A. Huikari. The effects of some sweetening agents and osmotic pressure on the intestinal absorption of sulfafurazole in the rat. J. Pharm. Pharmacol. 31:615–618 (1979).

    CAS  PubMed  Google Scholar 

  38. 38.

    M. F. Williams, G. E. Dukes, W. Heizer, Y.-H. Han, D. J. Hermann, T. Lampkin, and L. J. Hak. Influence of gastrointestinal site of drug delivery on the absorption characteristics of ranitidine. Pharm. Res. 9:1190–1194 (1992).

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    T. Grammatte, E. El. Desoky, and U. Klotz. Site-dependent small intestinal absorption of ranitidine. Eur. J. Clin. Pharmacol. 46:253–259 (1994).

    Article  Google Scholar 

  40. 40.

    D. J. Kazierad, K. D. Schlanz, and M. B. Bottorff. Beta blockers. In W. E. Evans, J. J. Schentag, and W. J. Jusko (eds.), Applied Pharmacokinetics — Principles of Therapeutic Drug Monitoring, 3rd ed, Applied Therapeutics, Vancouver, WA, 1995, pp. 24–31.

    Google Scholar 

  41. 41.

    D. L. Bourdet, J. B. Pritchard, and D. R. Thakker. Differential substrate and inhibitory activities of ranitidine and famotidine toward human organic cation transporter 1 (hOCT1; SLC22A1), hOCT2 (SLC22A2), and hOCT3 (SLC22A3). J. Pharmacol. Exp. Ther. 315:1288–1297 (2005).

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    U. Klotz and S. Walker. Biliary excretion of H2 receptor antagonists. Eur. J. Clin. Pharmacol. 29:91–92 (1990).

    Google Scholar 

  43. 43.

    N. Takamatsu, L. S. Welage, Y. Hayashi, R. Yamamoto, J. L. Barnett, V. P. Shah, L. J. Lesko, C. Ramachandran, and G. L. Amidon. Variability in cimetidine absorption and plasma double peaks following oral administration in the fasted state in humans: correlation with antral gastric motility. Eur. J. Pharm. Biopharm. 53:37–47 (2002).

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    A. Minocha, E. P. Krenzelok, and D. A. Spyker. Dosage recommendations for activated charcoal–sorbitol treatment. Clin. Toxicol. 23:579–587 (1985).

    Google Scholar 

  45. 45.

    M. J. Ellenhorn and D. G. Barceloux. Medical Toxicology Diagnosis and Treatment of Human Poisoning. Elsevier, New York, 1988, p. 9.

    Google Scholar 

  46. 46.

    J. Glauser. Tricyclic antidepressant poisoning. Clevel. Clin. J. Med. 67:704–719 (2000).

    CAS  Google Scholar 

  47. 47.

    American Academy of Clinical Toxicology and European Association of Poisons Centres and Clinical Toxicologists. Position paper: cathartics. J. Toxicol., Clin Toxicol. 42:243–253 (2004).

    Article  Google Scholar 

  48. 48.

    E. P. Krenzelok, R. Keller, and R. D. Stewart. Gastrointestinal transit times of cathartics combined with charcoal. Ann. Emerg. Med. 14:1152–1155 (1985).

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    M. Mayersohn, D. Perrier, and A. L. Picchioni. Evaluation of a charcoal–sorbitol mixture as an antidote for oral aspirin overdose. Clin. Toxicol. 11:561–567 (1977).

    CAS  PubMed  Google Scholar 

  50. 50.

    A. H. Al-Shareef, D. C. Buss, E. M. Allen, and P. A. Routledge. The effects of charcoal and sorbitol (alone and in combination) on plasma theophylline concentration after a sustained-release formulation. Human Exp. Toxicol. 9:179–182 (1990).

    CAS  Article  Google Scholar 

  51. 51.

    N. A. Minton and J. A. Henry. Prevention of drug absorption in simulated theophylline overdose. Clin. Toxicol. 33:43–49 (1995).

    CAS  Article  Google Scholar 

  52. 52.

    E. C. Scholtz, J. M. Jaffe, and J. L. Colazzi. Evaluation of five activated charcoal formulations for inhibition of aspirin absorption and palatability in man. Am. J. Hosp. Pharm. 35:1355–1359 (1978).

    CAS  PubMed  Google Scholar 

  53. 53.

    R. M. McNamara, C. K. Aaron, M. Gemborys, and S. Davidheiser. Sorbitol catharsis does not enhance efficacy of charcoal in a simulated acetaminophen overdose. Ann. Emerg. Med. 17:243–246 (1988).

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    C.-Y. Wu and L. Z. Benet. Predicting drug disposition via application of BCS: transport/absorption/elimination interplay and development of a biopharmaceutics disposition classification system. Pharm. Res. 22:11–23 (2005).

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    M. Lindenberg, S. Kopp, and J. B. Dressman. Classification of orally administered drugs on the World Health Organization Model list of Essential Medicines according to the biopharmaceutics classification system. Eur. J. Pharm. Biopharm. 58:265–278 (2004).

    PubMed  Article  Google Scholar 

  56. 56.

    Goodman and Gilman’s The Pharmacological Basis of Therapeutics. In J. G. Hardman and L. E. Limbird (eds.-in-chief), P. B. Molinoff and R. W. Ruddon (eds.), A. G. Gilman (consulting ed.), 9th ed. McGraw-Hill, New York, 1995, p. 1712.

  57. 57.

    R. E. Keller, R. A. Schwab, and E. P. Krenzelok. Contribution of sorbitol combined with activated charcoal in prevention of salicylate absorption. Ann. Emerg. Med. 19:654–656 (1990).

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Digestion and absorption in the gastrointestinal tract. Chapter 65. In A. C. Guyton and J. E. Hall (eds.), Textbook of Medicinal Physiology, 9th ed, W.B. Saunders, Philadelphia, 1996, p. 834.

  59. 59.

    D. Kruger, R. Grossklaus, M. Herold, S. Lorenz, and L. Klingebiel. Gastrointestinal transit and digestibility of maltitol, sucrose and sorbitol in rats: a multicompartmental model and recovery study. Experientia 48:733–740 (1992).

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    H. A. Krebs. Some general considerations concerning the use of carbohydrates in parenteral nutrition. In I. D. A. Johnston (ed.), Advances in Parenteral Nutrition, MTP, Lancaster, 1978, pp. 23–28.

    Google Scholar 

  61. 61.

    E. M. Hill, C. M. Flaitz, and G. R. Frost. Sweetener content of common pediatric oral liquid medications. Am. J. Hosp. Pharm. 45:135–142 (1988).

    CAS  PubMed  Google Scholar 

  62. 62.

    D. M. Lutomski, M. L. Gora, S. M. Wright, and J. E. Martin. Sorbitol content of selected oral liquids. Ann. Pharmacother. 27:269–274 (1993).

    CAS  PubMed  Google Scholar 

  63. 63.

    A. Kumar, R. D. Rawlings, and D. C. Beaman. The mystery ingredients: sweeteners, flavorings, dyes, and preservatives in analgesic/antipyretic, antihistamine/decongestant, cough and cold, antidiarrheal, and liquid theophylline preparations. Pediatrics 91:927–933 (1993).

    CAS  PubMed  Google Scholar 

  64. 64.

    R. E. Wrolstad and R. S. Shallenberger. Free sugars and sorbitol in fruits — A compilation from the literature. J. Assoc. Off. Anal. Chem. 64:91–103 (1981).

    CAS  PubMed  Google Scholar 

  65. 65.

    A. A. Moukarzel and M. T. Sabri. Gastric physiology and functions: effects of fruit juices. J. Am. Coll. Nutr. 15:18S–25S (1996).

    CAS  PubMed  Google Scholar 

  66. 66.

    R. A. Breitenbach. ‘Halloween diarrhea’ — An unexpected trick of sorbitol-containing candy. Postgrad. Med. 92:63–66 (1992).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by a contract from the Food and Drug Administration to the University of Tennessee, Memphis, Tennessee. The authors would like to thank Lawrence Lesko, Rabindra Patnaik and Lawrence Yu for their helpful discussion on the related topics during the early phase of this investigation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M.-L. Chen.

Additional information

The opinions expressed in this article are those of the authors and do not necessarily represent the views or policies of the Food and Drug Administration.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chen, ML., Straughn, A.B., Sadrieh, N. et al. A Modern View of Excipient Effects on Bioequivalence: Case Study of Sorbitol. Pharm Res 24, 73–80 (2007). https://doi.org/10.1007/s11095-006-9120-4

Download citation

Key words

  • bioavailability
  • bioequivalence
  • excipient
  • permeability
  • sorbitol