Pharmaceutical Research

, Volume 23, Issue 11, pp 2586–2594 | Cite as

Induction of Heme Oxygenase-1 (HO-1) and NAD[P]H: Quinone Oxidoreductase 1 (NQO1) by a Phenolic Antioxidant, Butylated Hydroxyanisole (BHA) and Its Metabolite, tert-Butylhydroquinone (tBHQ) in Primary-Cultured Human and Rat Hepatocytes

  • Young-Sam Keum
  • Yong-Hae Han
  • Celine Liew
  • Jung-Hwan Kim
  • Changjiang Xu
  • Xiaoling Yuan
  • Michael P. Shakarjian
  • Saeho Chong
  • Ah-Ng Kong
Research Paper

Abstract

Purpose

This study was aimed to investigate the effects of a phenolic antioxidant, butylated hydroxyanisole (BHA) and its metabolite, tert-butylhydroquinone (tBHQ) on the induction of HO-1, NQO1 and Nrf2 proteins and their regulatory mechanisms in primary-cultured hepatocytes.

Methods

After exposure of BHA and tBHQ to primary-cultured rat and human hepatocytes and mouse neonatal fibroblasts (MFs), Western blot, semi-quantitative RT-PCR and microarray analysis were conducted.

Results

Induction of HO-1, NQO1 and Nrf2 proteins and activation of ERK1/2 and JNK1/2 were observed after BHA and tBHQ treatments in primary-cultured rat and human hepatocytes. Semi-quantitative RT-PCR study and microarray analysis revealed that HO-1 and NQO1 were transcriptionally activated in primary-cultured rat hepatocytes and a substantial transcriptional activation, including HO-1 occurred in primary-cultured human hepatocytes after BHA treatment. Whereas BHA failed to induce HO-1 in wild-type and Nrf2 knock-out MFs, tBHQ strongly induced HO-1 in wild-type, but not in Nrf2 knock-out MFs.

Conclusions

Our data demonstrate that both BHA and tBHQ are strong chemical inducers of HO-1, NQO1 and Nrf2 proteins in primary-cultured human and rat hepatocytes with the activation of MAPK ERK1/2 and JNK1/2. However, in MFs, BHA failed to induce HO-1, whereas tBHQ strongly induced HO-1 in Nrf2 wild-type but not in Nrf2 knock-out, suggesting that Nrf2 is indispensable for tBHQ-induced HO-1 in MF.

Key words

butylated hydroxyanisole (BHA) mitogen-activated protein kinases (MAPKs) Nrf2 tert-butylhydroquinone (tBHQ) 

References

  1. 1.
    J. S. Lee and Y. J. Surh. Nrf2 as a novel molecular target for chemoprevention. Cancer Lett. 224:171–184 (2005).PubMedCrossRefGoogle Scholar
  2. 2.
    C. Chen and A. N. Kong. Dietary chemopreventive compounds and ARE/EpRE signaling. Free Radic. Biol. Med. 36:1505–1516 (2004).PubMedCrossRefGoogle Scholar
  3. 3.
    K. Itoh, T. Chiba, S. Takahashi, T. Ishii, K. Igarashi, Y. Katoh, T. Oyake, N. Hayashi, K. Satoh, I. Hatayama, M. Yamamoto, and Y. Nabeshima. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 236:313–322 (1997).PubMedCrossRefGoogle Scholar
  4. 4.
    Y. J. Surh. Cancer chemoprevention with dietary phytochemicals. Nat. Rev., Cancer. 3:768–780 (2003).CrossRefGoogle Scholar
  5. 5.
    L. E. Otterbein, M. P. Soares, K. Yamashita, and F. H. Bach. Heme oxygenase-1: unleashing the protective properties of heme. Trends Immunol. 24:449–455 (2003).PubMedCrossRefGoogle Scholar
  6. 6.
    K. A. Kirkby and C. A. Adin. Products of heme oxygenase and their potential therapeutic applications. Am. J. Physiol., Renal Physiol. 290:F563–F571 (2006).CrossRefGoogle Scholar
  7. 7.
    Z. Dong, Y. Lavrovsky, M. A. Venkatachalam, and A. K. Roy. Heme oxygenase-1 in tissue pathology: the yin and yang. Am. J. Pathol. 156:1485–1488 (2000).PubMedGoogle Scholar
  8. 8.
    D. E. Baranano, M. Rao, C. D. Ferris, and S. H. Snyder. Biliverdin reductase: a major physiologic cytoprotectant. Proc. Natl. Acad. Sci. U. S. A. 99:16093–16098 (2002).PubMedCrossRefGoogle Scholar
  9. 9.
    L. E. Otterbein, F. H. Bach, J. Alam, M. Soares, H. Tao Lu, M. Wysk, R. J. Davis, R. A. Flavell, and A. M. Choi. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat. Med. 6:422–428 (2000).PubMedCrossRefGoogle Scholar
  10. 10.
    R. Foresti, J. Hammad, J. E. Clark, T. R. Johnson, B. E. Mann, A. Friebe, C. J. Green, and R. Motterlini. Vasoactive properties of CORM-3, a novel water-soluble carbon monoxide-releasing molecule. Br. J. Pharmacol. 142:453–460 (2004).PubMedCrossRefGoogle Scholar
  11. 11.
    H. O. Pae, G. S. Oh, B. M. Choi, S. C. Chae, Y. M. Kim, K. R. Chung, and H. T. Chung. Carbon monoxide produced by heme oxygenase-1 suppresses T cell proliferation via inhibition of IL-2 production. J. Immunol. 172:4744–4751 (2004).PubMedGoogle Scholar
  12. 12.
    B. S. Zuckerbraun, T. R. Billiar, S. L. Otterbein, P. K. Kim, F. Liu, A. M. Choi, F. H. Bach, and L. E. Otterbein. Carbon monoxide protects against liver failure through nitric oxide-induced heme oxygenase 1. J. Exp. Med. 198:1707–1716 (2003).PubMedCrossRefGoogle Scholar
  13. 13.
    C. D. Ferris, S. R. Jaffrey, A. Sawa, M. Takahashi, S. D. Brady, R. K. Barrow, S. A. Tysoe, H. Wolosker, D. E. Baranano, S. Dore, K. D. Poss, and S. H. Snyder. Haem oxygenase-1 prevents cell death by regulating cellular iron. Nat. Cell Biol. 1:152–157 (1999).PubMedCrossRefGoogle Scholar
  14. 14.
    P. Nioi and J. D. Hayes. Contribution of NAD(P)H:quinone oxidoreductase 1 to protection against carcinogenesis, and regulation of its gene by the Nrf2 basic-region leucine zipper and the arylhydrocarbon receptor basic helix-loop–helix transcription factors. Mutat. Res. 555:149–171 (2004).PubMedGoogle Scholar
  15. 15.
    D. Ross. Quinone reductases multitasking in the metabolic world. Drug Metab. Rev. 36:639–654 (2004).PubMedCrossRefGoogle Scholar
  16. 16.
    G. Asher, J. Lotem, B. Cohen, L. Sachs, and Y. Shaul. Regulation of p53 stability and p53-dependent apoptosis by NADH quinone oxidoreductase 1. Proc. Natl. Acad. Sci. U. S. A. 98:1188–1193 (2001).PubMedCrossRefGoogle Scholar
  17. 17.
    G. Asher, J. Lotem, L. Sachs, C. Kahana, and Y. Shaul. Mdm-2 and ubiquitin-independent p53 proteasomal degradation regulated by NQO1. Proc. Natl. Acad. Sci. U. S. A. 99:13125–13130 (2002).PubMedCrossRefGoogle Scholar
  18. 18.
    L. W. Wattenberg. Inhibition of chemical carcinogen-induced pulmonary neoplasia by butylated hydroxyanisole. J. Natl. Cancer Inst. 50:1541–1544 (1973).PubMedGoogle Scholar
  19. 19.
    B. S. Reddy, Y. Maeura, and J. H. Weisburger. Effect of various levels of dietary butylated hydroxyanisole on methylazoxymethanol acetate-induced colon carcinogenesis in CF1 mice. J. Natl. Cancer Inst. 71:1299–1305 (1983).PubMedGoogle Scholar
  20. 20.
    F. L. Chung, M. Wang, S. G. Carmella, and S. S. Hecht. Effects of butylated hydroxyanisole on the tumorigenicity and metabolism of N-nitrosodimethylamine and N-nitrosopyrrolidine in A/J mice. Cancer Res. 46:165–168 (1986).PubMedGoogle Scholar
  21. 21.
    G. M. Williams and M. J. Iatropoulos. Inhibition of the hepatocarcinogenicity of aflatoxin B1 in rats by low levels of the phenolic antioxidants butylated hydroxyanisole and butylated hydroxytoluene. Cancer Lett. 104:49–53 (1996).PubMedCrossRefGoogle Scholar
  22. 22.
    H. Verhagen, P. A. Schilderman, and J. C. Kleinjans. Butylated hydroxyanisole in perspective. Chem. Biol. Interact. 80:109–134 (1991).PubMedCrossRefGoogle Scholar
  23. 23.
    H. Verhagen, H. H. Thijssen, F. ten Hoor, and J. C. Kleinjans. Disposition of single oral doses of butylated hydroxyanisole in man and rat. Food Chem. Toxicol. 27:151–158 (1989).PubMedCrossRefGoogle Scholar
  24. 24.
    L. W. Wattenberg, J. B. Coccia, and L. K. Lam. Inhibitory effects of phenolic compounds on benzo(a)pyrene-induced neoplasia. Cancer Res. 40:2820–2823 (1980).PubMedGoogle Scholar
  25. 25.
    B. Hager, J. R. Bickenbach, and P. Fleckman. Long-term culture of murine epidermal keratinocytes. J. Invest. Dermatol. 112:971–976 (1999).PubMedCrossRefGoogle Scholar
  26. 26.
    G. Shen, C. Xu, R. Hu, M. R. Jain, S. Nair, W. Lin, C. S. Yang, J. Y. Chan, and A. N. Kong. Comparison of (−)-epigallocatechin-3-gallate elicited liver and small intestine gene expression profiles between C57BL/6J mice and C57BL/6J/Nrf2 (−/−) mice. Pharm. Res. 22:1805–1820 (2005).PubMedCrossRefGoogle Scholar
  27. 27.
    D. Stewart, E. Killeen, R. Naquin, S. Alam, and J. Alam. Degradation of transcription factor Nrf2 via the ubiquitin–proteasome pathway and stabilization by cadmium. J. Biol. Chem. 278:2396–2402 (2003).PubMedCrossRefGoogle Scholar
  28. 28.
    J. Alam, E. Killeen, P. Gong, R. Naquin, B. Hu, D. Stewart, J. R. Ingelfinger, and K. A. Nath. Heme activates the heme oxygenase-1 gene in renal epithelial cells by stabilizing Nrf2. Am. J. Physiol., Renal Physiol. 284:F743–F752 (2003).PubMedGoogle Scholar
  29. 29.
    Y. S. Keum, W. S. Jeong, and A. N. Kong. Chemoprevention by isothiocyanates and their underlying molecular signaling mechanisms. Mutat. Res. 555:191–202 (2004).PubMedGoogle Scholar
  30. 30.
    D. Ross, J. K. Kepa, S. L. Winski, H. D. Beall, A. Anwar, and D. Siegel. NAD(P)H:quinone oxidoreductase 1 (NQO1): chemoprotection, bioactivation, gene regulation and genetic polymorphisms. Chem. Biol. Interact. 129:77–97 (2000).PubMedCrossRefGoogle Scholar
  31. 31.
    W. S. Jeong, M. Jun, and A. N. Kong. Nrf2: a potential molecular target for cancer chemoprevention by natural compounds. Antioxid. Redox Signal. 8:99–106 (2006).PubMedCrossRefGoogle Scholar
  32. 32.
    S. R. Chinni and F. H. Sarkar. Akt inactivation is a key event in indole-3-carbinol-induced apoptosis in PC-3 cells. Clin. Cancer Res. 8:1228–1236 (2002).PubMedGoogle Scholar
  33. 33.
    M. Saleem, F. Afaq, V. M. Adhami, and H. Mukhtar. Lupeol modulates NF-kappaB and PI3K/Akt pathways and inhibits skin cancer in CD-1 mice. Oncogene 23:5203–5214 (2004).PubMedCrossRefGoogle Scholar
  34. 34.
    K. H. Chun, J. W. Kosmeder II, S. Sun, J. M. Pezzuto, R. Lotan, W. K. Hong, and H. Y. Lee. Effects of deguelin on the phosphatidylinositol 3-kinase/Akt pathway and apoptosis in premalignant human bronchial epithelial cells. J. Natl. Cancer Inst. 95:291–302 (2003).PubMedCrossRefGoogle Scholar
  35. 35.
    R. Kahl, S. Weinke, and H. Kappus. Production of reactive oxygen species due to metabolic activation of butylated hydroxyanisole. Toxicology 59:179–194 (1989).PubMedCrossRefGoogle Scholar
  36. 36.
    P. A. Schilderman, J. M. van Maanen, E. J. Smeets, F. ten Hoor, and J. C. Kleinjans. Oxygen radical formation during prostaglandin H synthase-mediated biotransformation of butylated hydroxyanisole. Carcinogenesis 14:347–353 (1993).PubMedGoogle Scholar
  37. 37.
    D. C. Thompson, Y. N. Cha, and M. A. Trush. The peroxidase-dependent activation of butylated hydroxyanisole and butylated hydroxytoluene (BHT) to reactive intermediates. Formation of BHT-quinone methide via a chemical–chemical interaction. J. Biol. Chem. 264:3957–3965 (1989).PubMedGoogle Scholar
  38. 38.
    G. M. Williams, M. J. Iatropoulos, and J. Whysner. Safety assessment of butylated hydroxyanisole and butylated hydroxytoluene as antioxidant food additives. Food Chem. Toxicol. 37:1027–1038 (1999).PubMedCrossRefGoogle Scholar
  39. 39.
    F. Iverson. In vivo studies on butylated hydroxyanisole. Food Chem. Toxicol. 37:993–997 (1999).PubMedCrossRefGoogle Scholar
  40. 40.
    R. Yu, S. Mandlekar, and A. T. Kong. Molecular mechanisms of butylated hydroxylanisole-induced toxicity: induction of apoptosis through direct release of cytochrome c. Mol. Pharmacol. 58:431–437 (2000).PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Young-Sam Keum
    • 1
  • Yong-Hae Han
    • 2
  • Celine Liew
    • 3
  • Jung-Hwan Kim
    • 1
  • Changjiang Xu
    • 1
  • Xiaoling Yuan
    • 1
  • Michael P. Shakarjian
    • 4
  • Saeho Chong
    • 2
  • Ah-Ng Kong
    • 1
  1. 1.Department of Pharmaceutics, Ernest Mario School of PharmacyRutgers, The State University of New JerseyPiscatawayUSA
  2. 2.Department of Metabolism and PharmacokineticsBristol Myers Squibb PharmaceuticalsPrincetonUSA
  3. 3.Department of PharmacyNational University of SingaporeSingaporeSingapore
  4. 4.Department of MedicineUMDNJ-Robert Wood Johnson Medical SchoolPiscatawayUSA

Personalised recommendations