Skip to main content
Log in

Pegylated Nanocapsules Produced by an Organic Solvent-Free Method: Evaluation of their Stealth Properties

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To develop from an original process, a novel generation of stealth lipidic nanocapsules in order to improve the lipophilic drug delivery in accessible sites.

Materials and Methods

Nanocapsules covered by PEG1500 stearate were obtained by a low energy emulsification method. Conductivity measurements and ternary diagram were performed to describe the formulation mechanism. Hemolytic dosage CH50 and pharmacokinetic study in rats have been achieved in order to study the stealth properties of nanocapsules.

Results

Transition from an O/W emulsion to a w/O/W emulsion was necessary to produce PEG1500 stearate nanocapsules. Interestingly nanocapsules with a size around 26 nm and a polydispersity index inferior to 0.1 were obtained. The CH50 test has revealed a very weak complement consumption in the presence of such nanocapsules. Moreover, after intravenous injection into rats, PEG1500 stearate nanocapsules exhibited long circulating properties. The experimental data support the concept of steric repulsion of the surface towards proteins, displayed by nanocapsules covered with PEG1500 stearate. These in vivo results were in agreement with the PEG1500 density calculated at the nanocarrier surface.

Conclusions

Injectable drug carriers have been developed. Their long-circulating properties could confer them a strong potential for lipophilic drug targeting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C. Passirani and J. Benoit. Complement activation by injectable colloidal drug carriers. In R. I. Mahato (ed.), Biomaterials for Delivery and Targeting of Proteins and Nucleic Acids, CRC, 2005, pp. 187–230.

  2. D. Hoarau, P. Delmas, S. x. E. p. David, E. Roux, and J.-C. Leroux. Novel long-circulating lipid nanocapsules. Pharm. Res. 21:1783–1789 (2004).

    Article  PubMed  CAS  Google Scholar 

  3. R. Gref, M. Luck, P. Quellec, M. Marchand, E. Dellacherie, S. Harnisch, T. Blunk, and R. H. Muller. ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf., B Biointerfaces 18:301–313 (2000).

    Article  CAS  Google Scholar 

  4. B. Heurtault, P. Saulnier, B. Pech, J. E. Proust, and J. P. Benoit. Properties of polyethylene glycol 660 12-hydroxy stearate at a triglyceride/water interface. Int. J. Pharm. 242:167–170 (2002).

    Article  PubMed  CAS  Google Scholar 

  5. K. Shinoda. The stability of O/W Type Emulsions as Functions of Temperature and the HLB of Emulsifiers: The Emulsification by PIT-Method. J. Colloid Interface Sci. 30:258–263 (1969).

    Article  CAS  Google Scholar 

  6. T. Tadros, P. Izquierdo, J. Esquena, and C. Solans. Formation and stability of nano-emulsions. Adv. Colloid Interface Sci. 108–109:303–318 (2004).

    Article  PubMed  Google Scholar 

  7. S. Ballot, N. Noiret, F. Hindre, B. Denizot, E. Garin, H. Rajerison, and J. P. Benoit. (99m)Tc/(188)Re-labelled lipid nanocapsules as promising radiotracers for imaging and therapy: formulation and biodistribution. Eur. J. Nucl. Med. Mol. Imaging 1–6 (2006).

  8. B. Heurtault, P. Saulnier, B. Pech, M.-C. Venier-Julienne, J.-E. Proust, R. Phan-Tan-Luu, and J.-P. Benoit. The influence of lipid nanocapsule composition on their size distribution. Eur. J. Pharm. Sci. 18:55–61 (2003).

    Article  PubMed  CAS  Google Scholar 

  9. B. a. Heurtault, P. Saulnier, B. Pech, J.-E. Proust, and J.-P. Benoit. A novel phase inversion-based process for the preparation of lipid nanocarriers. Pharm. Res. 19:875–880 (2002).

    Article  PubMed  CAS  Google Scholar 

  10. O. Lambert, N. Cavusoglu, J. Gallay, M. Vincent, J. L. Rigaud, J. P. Henry, and J. Ayala-Sanmartin. Novel organization and properties of annexin 2-membrane complexes. J. Biol. Chem. 279:10872–10882 (2004).

    Article  PubMed  CAS  Google Scholar 

  11. G. E. C. Sims and T. J. A. Snope. Method for the estimation of poly(ethylene glycol) in plasma protein fractions. Anal. Biochem. 107:60–63 (1980).

    Article  PubMed  CAS  Google Scholar 

  12. H. Ohshima. Dynamic electrophoretic mobility of a soft particle. J. Colloid Interface Sci. 233:142–152 (2001).

    Article  PubMed  CAS  Google Scholar 

  13. V. Ducel, P. Saulnier, J. Richard, and F. Boury. Plant protein-polysaccharide interactions in solutions: application of soft particle analysis and light scattering measurements. Colloids Surf., B Biointerfaces 41:95–102 (2005).

    Article  CAS  Google Scholar 

  14. W. Wang, K. Okamoto, J. Rounds, E. Chambers, and D. O. Jacobs. In vitro complement activation favoring soluble C5b-9 complex formation alters myocellular sodium homeostasis. Surgery 129:209–219 (2001).

    Article  PubMed  CAS  Google Scholar 

  15. M. T. Peracchia, C. Vauthier, C. Passirani, P. Couvreur, and D. Labarre. Complement consumption by poly(ethylene glycol) in different conformations chemically coupled to poly(isobutyl 2-cyanoacrylate) nanoparticles. Life Sci. 61:749–761 (1997).

    Article  PubMed  CAS  Google Scholar 

  16. F. Mevellec, F. Tisato, F. Refosco, A. Roucoux, N. Noiret, H. Patin, and G. Bandoli. Synthesis and characterization of the “sulfur-rich” bis(perthiobenzoato)(dithiobenzoato)technetium(III) heterocomplex. Inorg. Chem. 41:598–601 (2002).

    Article  PubMed  CAS  Google Scholar 

  17. J. Allouche, E. Tyrode, V. Sadtler, L. Choplin, and J. L. Salager. Simultaneous conductivity and viscosity measurements as a technique to track emulsion inversion by the phase-inversion-temperature method. Langmuir 20:2134–40 (2004).

    Article  PubMed  CAS  Google Scholar 

  18. W. D. Bancroft. The theory of emulsification. J. Phys. Chem. 17: (1913).

  19. J. Allouche, E. Tyrode, V. Sadtler, L. Choplin, and J. L. Salager. Single and two steps emulsification to prepare a persistent multiple emulsion with a surfactant-polymer mixture. Ind. Eng. Chem. Res. 42:3982–3988 (2003).

    Article  CAS  Google Scholar 

  20. S. Marfisi, M. P. Rodriguez, G. Alvarez, M.-T. Celis, A. Forgiarini, J. Lachaise, and J.-L. Salager. Complex emulsion inversion pattern associated with the partitioning of nonionic surfactant mixtures in the presence of alcohol cosurfactant. Langmuir 21:6712–6716 (2005).

    Article  PubMed  CAS  Google Scholar 

  21. J. L. Salager, M. Minana-Perez, M. Perez-Sanchez, M. Ramirez-Gouveia, and C. I. Rojas. Surfactant-oil-water systems near the affinity inversion. Part III. The two kinds of emulsion inversion. J. Dispers. Sci. Technol. 4:313–329 (1983).

    Article  CAS  Google Scholar 

  22. M. C. E. Van Hecke, J. Poprawski, J.-M. Aubry,and J.-L. Salager,. A novel criterion for studying the phase equilibria of non-ionic surfactant-triglyceride oil-water systems. Polym. Int. 52:559–562 (2003).

    Article  CAS  Google Scholar 

  23. J. Poprawski, M. Catte, L. Marquez, M.-J. Marti, J.-L. Salager, and J.-M. Aubry. Application of hydrophilic–lipophilic deviation formulation concept to microemulsions containing pine oil and nonionic surfactant. Polym. Int. 52:629–632 (2003).

    Article  CAS  Google Scholar 

  24. A. Wadle, T. Forster, and W. von Rybinski. Influence of the microemulsion phase structure on the phase inversion temperature emulsification of polar oils. Colloids Surf., A Physicochem. Eng. Asp. 76:51–57 (1993).

    Article  CAS  Google Scholar 

  25. D. Morales, J. M. Gutiérrez, M. J. García-Celma, and Y. C. Solans. A study of the relation between bicontinuous microemulsions and oil/water nano-emulsion formation. Langmuir 19:7196–7200 (2003).

    Article  CAS  Google Scholar 

  26. A. Vonarbourg, C. Passirani, P. Saulnier, and J. P. Benoit. Evaluation of pegylated lipid nanocapsules versus complement system activation and macrophage uptake. J. Biomed. Mater. Res. A In Press: (2006).

  27. T. Ishida, H. Harashima, and H. Kiwada. Liposome clearance. Bios. Rep. 22:197–224 (2002).

    Article  CAS  Google Scholar 

  28. H. Harashima, K. Sakata, K. Funato, and H. Kiwada. Enhanced hepatic uptake of liposomes through complement activation depending on the size of liposomes. Pharm. Res. 11:402–406 (1994).

    Article  PubMed  CAS  Google Scholar 

  29. S. M. Moghimi and J. Szebeni. Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog. Lipid Res. 42:463–478 (2003).

    Article  PubMed  CAS  Google Scholar 

  30. S. I. Jeon, J. H. Lee, J. D. Andrade, and P. G. De Gennes. Protein-surface interactions in the presence of polyethylene oxide. I. Simplified theory. J. Colloid Interface Sci. 142:149–158 (1991).

    Article  CAS  Google Scholar 

  31. I. Minkov, T. Ivanova, I. Panaiotov, J. Proust, and P. Saulnier. Reorganization of lipid nanocapsules at air-water interface. I. Kinetics of surface film formation. Colloids Surf., B Biointerfaces 45:14–23 (2005).

    Article  CAS  Google Scholar 

  32. V. G. Ivkov and G. N. Berestovskii. Conformation of hydrocarbon chains in a lipid bilayer. Biofizika 24:633–636 (1979).

    PubMed  CAS  Google Scholar 

  33. J. M. Smaby, W. J. Baumann, and H. L. Brockman. Lipid structure and the behavior of cholesteryl esters in monolayer and bulk phases. J. Lipid Res. 20:784–8 (1979).

    PubMed  CAS  Google Scholar 

  34. M. Vittaz, D. Bazile, G. Spenlehauer, T. Verrecchia, M. Veillard, F. Puisieux, and D. Labarre. Effect of PEO surface density on long-circulating PLA-PEO nanoparticles which are very low complement activators. Biomaterials 17:1575–1581 (1996).

    Article  PubMed  CAS  Google Scholar 

  35. A. Vonarbourg, P. Saulnier, C. Passirani, and J. P. Benoit. Electrokinetic properties of noncharged lipid nanocapsules: influence of the dipolar distribution at the interface. Electrophoresis 26:2066–75 (2005).

    Article  PubMed  CAS  Google Scholar 

  36. A. Mori, A. L. Klibanov, V. P. Torchilin, and L. Huang. Influence of the steric barrier activity of amphipathic poly(ethyleneglycol) and ganglioside GM1 on the circulation time of liposomes and on the target binding of immunoliposomes in vivo. FEBS Lett. 284:263–266 (1991).

    Article  PubMed  CAS  Google Scholar 

  37. R. Gref, Y. Minamitake, M. T. Peracchia, V. Trubetskoy, V. Torchilin, and R. Langer. Biodegradable long-circulating polymeric nanospheres. Science 263:1600–3 (1994).

    Article  PubMed  CAS  Google Scholar 

  38. J.-C. Leroux, E. Allemann, F. De Jaeghere, E. Doelker, and R. Gurny. Biodegradable nanoparticles—from sustained release formulations to improved site specific drug delivery. J. Control. Release 39:339–350 (1996).

    Article  CAS  Google Scholar 

  39. J.-C. Leroux, F. De Jaeghere, B. Anner, E. Doelker, and R. Gurny. An investigation on the role of plasma and serum opsonins on the internalization of biodegradable poly(d,l-lactic acid) nanoparticles by human monocytes. Life Sciences 57:695–703 (1995).

    Article  PubMed  CAS  Google Scholar 

  40. V. C. F. Mosqueira, P. Legrand, J.-L. Morgat, M. Vert, E. Mysiakine, R. Gref, J.-P. Devissaguet, and G. Barratt. Biodistribution of long-circulating PEG-grafted nanocapsules in mice: effects of PEG chain length and density. Pharm. Res. 18:1411–1419 (2001).

    Article  PubMed  CAS  Google Scholar 

  41. S. I. Jeon, J. H. Lee, J. D. Andrade, and P. G. De Gennes. Protein-surface interactions in the presence of polyethylene oxide. I. Simplified theory. J. Colloid Interface Sci. 142:149–158 (1991).

    Article  CAS  Google Scholar 

  42. B. B. Lundberg, B.-C. Mortimer, and T. G. Redgrave. Submicron lipid emulsions containing amphipathic polyethylene glycol for use as drug-carriers with prolonged circulation time. Int. J. Pharm. 134:119–127 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank O. Lambert for Cryo-TEM studies (UMR-CNRS 5471, Bordeaux, F−33405 France; Université de Bordeaux 1, Bordeaux, F-33405 France). We also want to thank Andréanne Bouchard (University of Technology, Delft, NL-2600 AA The Netherlands) for her valuable comments and suggestions. This work was supported by the departmental committee of Maine-et-Loire of “Ligue contre le cancer.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Saulnier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Béduneau, A., Saulnier, P., Anton, N. et al. Pegylated Nanocapsules Produced by an Organic Solvent-Free Method: Evaluation of their Stealth Properties. Pharm Res 23, 2190–2199 (2006). https://doi.org/10.1007/s11095-006-9061-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9061-y

Key words

Navigation