Skip to main content
Log in

Comparative Relaxation Dynamics of Glucose and Maltitol

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Purpose

To demonstrate the utility of differential scanning calorimetry (DSC) for determining activation energy landscape in amorphous pharmaceutical systems throughout the sub-T g and T g regions.

Materials and Methods

DSC was employed to determine the effective activation energies (E) of the relaxation in sub-T g and T g regions as well as the sizes of cooperatively rearranging regions in glassy maltitol and glucose.

Results

It has been found that in the sub-T g region E decreases with decreasing T reaching the values ∼60 (glucose) and ∼70 (maltitol) kJ mol−1 that are comparable to the literature values of the activation energies for the β-relaxation. In the T g region E decreases (from ∼250 to ∼150 kJ mol−1 in maltitol and from ∼220 to ∼170 kJ mol−1 in glucose) with increasing T as typically found for the α-relaxation. From the heat capacity measurements the sizes of cooperatively rearranging regions have been determined as 3.1 (maltitol) and 3.3 (glucose) nm.

Conclusions

DSC can be used for evaluating the energy landscapes. The E values for maltitol are somewhat greater than for glucose due to the added impeding effect of the bulky substitute group in maltitol. The comparable sizes of the cooperatively rearranging regions suggest a similarity of the heterogeneous glassy structures of the two compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. E. Donth. The Glass Transition: Relaxation Dynamics in Liquids and Disordered Materials, Springer, Berlin, 2001.

    Google Scholar 

  2. C. A. Angell. Relaxation in liquids, polymers and plastic crystals—strong/fragile patterns and problems. J. Non-Cryst. Solids 131–133:13–31 (1991).

    Article  Google Scholar 

  3. S. Vyazovkin, and I. Dranca. A DSC Study of α- and β-relaxations in a PS-clay system. J. Phys. Chem. B 108:11981–11987 (2004).

    Article  CAS  Google Scholar 

  4. S. Vyazovkin, N. Sbirrazzuoli, and I. Dranca I. Variation of the effective activation energy throughout the glass transition. Macromol. Rapid Commun. 25:1708–1713 (2004).

    Article  CAS  Google Scholar 

  5. B. Wunderlich. Thermal Analysis, Academic, Boston, 1990.

    Google Scholar 

  6. K.-H. Illers. Einfluss der termischen Vorgeschichte auf die Eigenschaften von Polyvinylchlorid. Makromol. Chem. 127:1–33 (1969).

    Article  CAS  Google Scholar 

  7. H. S. Chen. On the mechanisms of structural relaxation in a Pd48Ni32P20 glass. J. Non-Cryst. Solids 46:289–305 (1981).

    Article  CAS  Google Scholar 

  8. H. S. Chen. Kinetics of low temperature structural relaxation in two (Fe-Ni)-based metallic glasses. J. Appl. Phys. 52:1868–1870 (1981).

    Article  CAS  Google Scholar 

  9. V. A. Bershtein and V. M. Egorov. Differential Scanning Calorimetry of Polymers, Ellis Horwood, New York, 1994.

    Google Scholar 

  10. V. A. Bershtein, and V. M. Yegorov. General mechanism of the β transition in polymers. Polym. Sci. USSR 27:2743–2757 (1985).

    Article  Google Scholar 

  11. K. Kawai, T. Hagiwara, R. Takai, and T. Suzuki. Comparative investigation by two analytical approaches of enthalpy relaxation for glassy glucose, maltose, and trehalose. Pharm. Res. 22:490–495 (2005).

    Article  PubMed  CAS  Google Scholar 

  12. S. Vyazovkin, and I. Dranca. Probing beta relaxation in pharmaceutically relevant glasses by using DSC. Pharm. Res. 23:422–428 (2006).

    Article  PubMed  CAS  Google Scholar 

  13. L. Carpentier and M. Descamps. Dynamic decoupling and molecular complexity of glass-forming maltitol. J. Phys. Chem. B 107:271–275 (2003).

    Article  CAS  Google Scholar 

  14. A. Faivre, G. Niquet, M. Maglione, J. Fornazero, J. F. Jal, and L. David. Dynamics of sorbitol and maltitol over a wide time-temperature range. Eur. Phys. J. B 10:277–286 (1999).

    Article  CAS  Google Scholar 

  15. N. T. Correia, C. Alvarez, J. J. M. Ramos, and M. Descamps. Molecular motions in molecular glasses as studied by thermally stimulated depolarization currents (TSDC). Chem. Phys. 252:151–163 (2000).

    Article  CAS  Google Scholar 

  16. T. R. Noel, R. Parker, and S. G. Ring. Effect of molecular structure and water content on the dielectric relaxation behaviour of amorphous low molecular weight carbohydrates above and below their glass transition. Carbohydr. Res. 329:839–845 (2000).

    Article  PubMed  CAS  Google Scholar 

  17. Gangasharan and S. S. N. Murthy. Nature of the relaxation processes in the suprecooled liquid and the glassy states of some carbohydrates. J. Phys. Chem. 99:12349–12354 (1995).

    Article  CAS  Google Scholar 

  18. R. K. Chan, K. Pathmanathan, and G. P. Johari. Dielectric relaxations in the liquid and glassy states of glucose its water mixtures. J. Phys. Chem. 90:6358–6362 (1986).

    Article  CAS  Google Scholar 

  19. A. Kudlik, S. Benkhof, T. Blochowicz, C. Tschirwitz, and E. Rössler. The dielectric response of simple organic glass formers. J. Mol. Str. 479:201–218 (1999).

    Article  CAS  Google Scholar 

  20. C. T. Moynihan, A. J. Eastel, J. Wilder, and J. Tucker. Dependence of the glass transition temperature on heating and cooling rate. J. Phys. Chem. 78:2673–2677 (1974).

    Article  CAS  Google Scholar 

  21. A. J. Kovacs, J. M. Hutchinson, and J. J. Aklonis, The Structure of Non-Crystalline Materials; P. H. Gaskell, Ed.; Taylor & Francis: 1977, p. 153.

  22. S. Matsuoka. Relaxation Phenomena in Polymers, Hanser, Munich, 1992.

    Google Scholar 

  23. R. Bohmer, K. L. Ngai, C. A. Angell, and D. J. Plazek. Nonexponential relaxations in strong and fragile glass formers. J. Chem. Phys. 99:4201–4209 (1993).

    Article  Google Scholar 

  24. T. Honma, Y. Benino, T. Komatsu, R. Sato, and V. Dimitrov. Structural relaxation kinetics of antimony borate glasses with covalent bonding character. J. Chem. Phys. 115:7207–7214 (2001).

    Article  CAS  Google Scholar 

  25. C. A. Angell, R. C. Stell, and W. Sichina. Viscosity-temperature function for sorbitol from combined viscosity and differential scanning calorimetry studies. J. Phys. Chem. 86:1540–1542 (1982).

    Article  CAS  Google Scholar 

  26. B. C. Hancock, C. R. Dalton, M. J. Pikal, and S. L. Shamblin. A pragmatic test of a simple calorimetric method for determining the fragility of some amorphous pharmaceutical materials. Pharm. Res. 15:762–767 (1998).

    Article  PubMed  CAS  Google Scholar 

  27. J. D. Ferry. Viscoelastic Properties of Polymers, 3rd ed. J. Wiley, New York, 1980.

    Google Scholar 

  28. S. Vyazovkin. Evaluation of the activation energy of thermally stimulated solid-state reactions under an arbitrary variation of the temperature. J. Comput. Chem. 18:393–402 (1997).

    Article  CAS  Google Scholar 

  29. S. Vyazovkin. Modification of the integral isoconversional method to account for variation in the activation energy. J. Comput. Chem. 22:178–183 (2001).

    Article  CAS  Google Scholar 

  30. I. M. Hodge. Enthalpy relaxation and recovery in amorphous materials J. Non-Cryst. Solids 169:211–266 (1994).

    Article  CAS  Google Scholar 

  31. O. Bustin, and M. Descamps. Slow structural relaxations of glass-forming maltitol by modulated DSC calorimetry. J. Chem. Phys. 110:10982–10992 (1999).

    Article  CAS  Google Scholar 

  32. R. Wungtanagorn, and S. J. Schmidt. Phenomenological study of enthalpy relaxation of amorphous glucose, fructose, and their mixture. Thermochim. Acta 369:95–116 (2001).

    Article  CAS  Google Scholar 

  33. T. G. Fox, and P. J. Flory. Second-order transition temperatures and related properties of polystyrene. J. Appl. Phys. 21:581–591 (1950).

    Article  CAS  Google Scholar 

  34. J. R. McLoughlin, and A. V. Tobolsky. The viscoelastic behavior of polymethyl methacrylate. J. Coll. Sci. 7:555–568 (1952).

    Article  CAS  Google Scholar 

  35. A. Schouten, J. A. Kanters, J. Kroon, P. Looten, P. Duflot, and M. Mathlouthi. A redetermination of the crystal and molecular structure of maltitol (4-O-α-d-glucopyranosyl-d-glucitol). Carbohydr. Res. 322:298–302 (1999).

    Article  CAS  Google Scholar 

  36. T. R. R. McDonald and C. A. Beevers. The crystal and molecular structure of α-glucose. Acta Cryst. 5:654–659 (1952).

    Article  CAS  Google Scholar 

  37. E. Hempel, G. Hempel, A. Hensel, C. Schick, and E. Donth. Charcteristic length of dynamic glass transition near T g for a wide assortment of glass-forming substances. J. Phys. Chem. B 104:2460–2466 (2000).

    Article  CAS  Google Scholar 

  38. P. D. Orford, R. Parker, and S. G. Ring. Aspects of the glass transition behaviour of mixtures of carbohydrates of low molecular weight. Carbohydr. Res. 196:11–18 (1990).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors are grateful to the Boehringer–Ingelheim Cares Foundation for support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Vyazovkin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vyazovkin, S., Dranca, I. Comparative Relaxation Dynamics of Glucose and Maltitol. Pharm Res 23, 2158–2164 (2006). https://doi.org/10.1007/s11095-006-9050-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9050-1

Key words

Navigation