A. T. Florence and F. Rieg. L'instabilité des émulsions. In: F. Puissieux and M. Seiller (eds.), Agents de Surface et Émulsions: Les Systèmes Dispersés I. Lavoisier, Tec & Doc, Paris, 1983, pp. 321–342, (Galenica 5 vol. 5).
Google Scholar
R. P. Borwankar, L. A. Lobo, and D. T. Wasan. Emulsion stability—kinetics of flocculation and coalescence. Colloids Surf.
69:135–146 (1992).
Article
CAS
Google Scholar
E. Dickinson. Les Colloïdes Alimentaires. Masson, Paris, 1992, pp. 85–121.
Google Scholar
P. C. Hiemenz and R. Rajagopalan. Principles of Colloid and Surface Chemistry, 3rd ed. Dekker, New York, 1997.
Google Scholar
J. Mewis and J. H. Macosko. Rheology: Principles, Measurements and Applications. VCH, New York, 1994, Chapter 10.
Google Scholar
T. F. Tadros. Fundamental principles of emulsion rheology and their applications. Colloids Surf. A: Physicochem. Eng. Asp.
91:39–55 (1994).
Article
CAS
Google Scholar
R. Pal. Effect of droplet size on the rheology of emulsions. AIChE J.
42:3181–3190 (1996).
Article
CAS
Google Scholar
H. A Barnes. Rheology of emulsions—a review. Colloids Surf. A: Physicochem. Eng. Asp.
91:89–95 (1994).
Article
CAS
Google Scholar
T. F. Tadros. Correlation of viscoelastic properties of stable and flocculated suspensions with their interparticle interactions. Adv. Colloid Interface Sci.
68:97–200 (1996).
CAS
Google Scholar
T. G. Mason. New fundamental concepts in emulsion rheology. Curr. Opin. Colloid Interface Sci.
4:231–238 (1999).
Article
CAS
Google Scholar
R. Chanamai and D. J. McClements. Dependence of creaming and rheology of monodisperse oil-in-water emulsions on droplet size and concentration. Colloids Surf. A: Physicochem. Eng. Asp.
172:79–86 (2000).
Article
CAS
Google Scholar
I. Terrisse, M. Seiller, A. Rabaron, J. L. Grossiord, A. Magnet, and C. Le Hen-Ferrenbach. Rheology: how to characterize and to predict the evolution of W/O/W multiple emulsions. Int. J. Cosmet. Sci.
15:53–62 (1993).
Article
CAS
Google Scholar
C. Py, J. Rouvière, P. Loll, M. C. Taelman, and T. F. Tadros. Investigation of multiple emulsion stability using rheological measurements. Colloids Surf. A: Physicochem. Eng. Asp. 91:215–225 (1994).
Article
CAS
Google Scholar
S. Tamburic. The aging of polymer-stabilized creams: a rheological viewpoint. Cosmet. Toiletries
15:43–49 (2000).
Google Scholar
M. Korhonen, L. Hellen, J. Hirvonen, and J. Yliruusi. Rheological properties of creams with four different surfactant combinations—effect of storage time and conditions. Int. J. Pharm.
221:187–196 (2001).
PubMed
Article
CAS
Google Scholar
V. Kontogiorgos, C. G. Biliaderis, V. Kiosseoglou, and G. Doxastakis. Stability and rheology of egg-yolk-stabilized concentrated emulsions containing cereal β-glucans of varying molecular size. Food Hydrocoll.
18:987–998 (2004).
Article
CAS
Google Scholar
H. Masmoudi, Y. Le Dréau, P. Piccerelle, and J. Kister. The evaluation of cosmetic and pharmaceutical emulsions aging process using classical techniques and a new method: FTIR. Int. J. Pharm.
289:117–131 (2005).
PubMed
Article
CAS
Google Scholar
J. Roussos. Formulation des émulsions. In: F. Puissieux, M. Seiller (eds.), Agents de Surface et Émulsions: Les Systèmes Dispersés I. Lavoisier, Tec & Doc, Paris, 1983, pp. 407–421, (Galenica 5 vol. 5)
Google Scholar
J. Surh, E. A. Decker, and D. J. McClements. Properties and stability of oil-in-water emulsions stabilized by fish gelatine. Food Hydrocoll.
20:596–606 (2006).
Article
CAS
Google Scholar
V. André, N. Willenbacher, H. Debus, L. Börger, P. Fernandez, T. Frechen, and J. Rieger. Prediction of emulsion stability: facts and myth. Cosmetics and Toiletries Manufacture Worldwide 102–109 (2003).
D. Vasiljevic, J. Parojcic, M. Primorac, and G. Vuleta. An investigation into the characteristics and drug release properties of multiple W/O/W emulsion systems containing low concentration of lipophilic polymeric emulsifier. Int. J. Pharm.
309:171–177 (2006).
PubMed
Article
CAS
Google Scholar
P. B. Laxton and J. C. Berg. Gel trapping of dense colloids. J. Colloid Interface Sci. 285:152–157 (2005).
PubMed
Article
CAS
Google Scholar
S. Savic, G. Valuta, R. Daniels, and C. C. Mueller-Goymann. Colloidal microstructure of binary systems and model creams stabilized with an alkylpolyglucoside non-ionic emulsifier. Colloid. Polym. Sci.
283:439–451 (2005).
Article
CAS
Google Scholar
L. Baudonnet, J. L. Grossiord, and F. Rodriguez. Physicochemical characterization and in vitro release of salicylic acid from O/W emulsions prepared with Montanov 68®: effect of formulation parameters. Drug Dev. Ind. Pharm.
30:975–984 (2004).
PubMed
Article
CAS
Google Scholar
G. P. Roberts and H. A. Barnes. New measurements of the flow-curves for Carbopol dispersions without slip artefacts. Rheol. Acta.
40:499–503 (2001).
Article
CAS
Google Scholar
H. Zhu, Y. D. Kim, and D. De Kee. Non-Newtonian fluids with a yield stress. J. Non-Newtonian Fluid Mech.
129:177–181 (2005).
Article
CAS
Google Scholar
T. F. Tadros. Application of rheology for assessment and prediction of the long-term physical stability of emulsions. Adv. Colloid Interface Sci.
108–109:227–258 (2004).
PubMed
Article
Google Scholar
N. G. Diftis, C. G. Biliaderis, and V. D. Kiosseoglou. Rheological properties and stability of model salad dressing emulsions prepared with a dry-heated soybean protein isolate-dextran mixture. Food Hydrocoll.
19:1025–1031 (2005).
Article
CAS
Google Scholar
T. Ó. Thorgeirsdóttir, A. L. Kjøniksen, K. D. Knudsen, T. Kristmundsdóttir, and B. Nyström. Viscoelastic and structural properties of pharmaceutical hydrogels containing monocaprin. Eur. J. Pharm. Biopharm.
59:333–342 (2005).
PubMed
Article
Google Scholar
A. Paraskevopoulou, V. Kiosseoglou, S. Alevisopoulos, and S. Kasapis. Small deformation properties of model salad dressings prepared with reduced cholesterol egg yolk. J. Texture Stud.
28:221–237 (1997).
Article
Google Scholar
N. Jager-Lézer, J. F. Tranchant, V. Alard, C. Vu, P. C. Tchoreloff, and J. L. Grossiord. Rheological analysis of highly concentrated W/O emulsions. Rheol. Acta.
37:129–138 (1998).
Article
Google Scholar
G. K. Moates, A. D. Watson, and M. M. Robins. Creaming and oscillation rheology of weakly flocculated concentrated emulsions. Colloids Surf. A: Physicochem. Eng. Aspects.
190:167–178 (2001).
Article
CAS
Google Scholar
J. Dubochet, J. Lepault, R. Freeman, J. A. Berriman, and J. C. Homo. Electron microscopy of frozen water and aqueous solutions. J. Microscopy.
128:219–237 (1982).
Google Scholar
J. A. Zasadzinski and S. M. Bailey. Applications of freeze-fracture replication to problems in materials and colloid science. J. Electron Microsc. Tech.
13:309–334 (1989).
PubMed
Article
CAS
Google Scholar
E. Dumay, C. Lambert, S. Funtenberger, and J. C. Cheftel. Effects of high pressure on the physico-chemical characteristics of dairy creams and model oil/water emulsions. Lebensmittel-Wissenschaft und-Technologie.
29:606–625 (1996).
Article
CAS
Google Scholar
http://www.pharma.noveoinc.com/litterature.
T. Sanz Taberner, A. Martín-Villodre, J. M. Pla-Delfina, and J. V. Herráez. Consistency of Carbopol 971-P NF gels and influence of soluble and cross-linked PVP. Int. J. Pharm.
233:43–50 (2002).
Article
Google Scholar
R. Barreiro-Iglesias, C. Alvarez-Lorenzo, and A. Concheiro. Poly(acrylic acid) microgels (carbopol® 934)/surfactant interactions in aqueous media: Part I: Nonionic surfactants. Int. J. Pharm.
258:165–177 (2003).
PubMed
Article
CAS
Google Scholar